

Translated and Published by Japanese Standards Association

JIS K 0312:2005

Method for determination of tetra-through octachlorodibenzop-dioxins, tetra-through octachlorodibenzofurans and dioxin-like polychlorinatedbiphenyls in industrial water and waste water

ICS 13.060.25; 13.060.30

 $Reference\ number\ : JIS\ K\ 0312:2005\ (E)$

K 0312:2005

Foreword

This translation has been made based on the original Japanese Industrial Standard revised by the Minister of Economy, Trade and Industry through deliberations at the Japanese Industrial Standards Committee in accordance with the Industrial Standardization Law. Consequently **JIS K 0312**: 1999 is replaced with this **JIS K 0312**: 2005.

Attention is drawn to the possibility that some parts of this Standard may conflict with a patent right, application for a patent after opening to the public, utility model right or application for registration of utility model after opening to the public which have technical properties. The relevant Minister and the Japanese Industrial Standards Committee are not responsible for identifying the patent right, application for a patent after opening to the public, utility model right or application for registration of utility model after opening to the public which have the said technical properties.

Date of Establishment: 1999-09-20

Date of Revision: 2005-06-20

Date of Public Notice in Official Gazette: 2005-06-20

Investigated by: Japanese Industrial Standards Committee

Standards Board

Technical Committee on Environment and

Recycling Policy

JIS K 0312:2005, First English edition published in 2005-12

Translated and published by: Japanese Standards Association 4-1-24, Akasaka, Minato-ku, Tokyo, 107-8440 JAPAN

In the event of any doubts arising as to the contents, the original JIS is to be the final authority.

© JSA 2005

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

Printed in Japan

NH/AT

Contents

		Page
1	Scope	1
2	Normative references	1
3	Definitions	2
4	Outline of the analytical method	4
5	Sample	6
5.1	Selection of sampling time and sampling point	6
5.2	Sampling	6
5.3	Record of sampling	7
5.4	Handling the sample	7
6	Pretreatment of the sample	7
6.1	Outline for the pretreatment of the sample	7
6.2	Reagents	9
6.3	Equipment and apparatus	13
6.4	Procedures for pretreatment	14
7	Identification and determination	22
7.1	Outline of the identification and the determination	22
7.2	Reagents and apparatus	22
7.3	Measurement	25
7.4	Identification and determination	30
7.5	The minimum limit of detection and the minimum limit of determination	33
7.6	Confirmation of the recovery ratio	35
8	Report of the result	36
8.1	Marking method	36
8.2	Unit of concentration	36
8.3	Change to toxic equivalency quantity (TEQ)	36
8.4	Treatment of numerical values	37

K 0312:2005

9	Quality control of the measured data	39
9.1	Assurance of reliability of measured data	39
9.2	Requirements for operation of the measurement	42
9.3	Record of measurement operation	45
9.4	Report on precision control	45
Ann	ex 1 (normative) Sampling by a large volume of collecting apparatus	54
Ann	ex 2 (informative) Example for use of internal standard substance	56

JIS K 8680 Toluene

JIS K 8891 Methanol

Method for determination of tetra-through octachlorodibenzo-p-dioxins, tetra-through octachlorodibenzofurans and dioxin-like polychlorinatedbiphenyls in industrial water and waste water

JIS K 0312:2005

1 Scope This Japanese Industrial Standard specifies the method of analysis for tetra-through octachlorodibenzo-para-dioxins, tetra-through octachlorodibenzo-furans and dioxin-like PCBs (hereafter referred to as "dioxins") in industrial water and waste water using a gas chromatograph coupled to a mass spectrometer (hereafter referred to as "GC/MS"). The GC/MS employed in this Standard shall be the double-focusing mass spectrometer (MS) where the capillary column of a gas chromatograph (GC) is used and its resolution is 10 000 or more.

The minimum limits of detection of GC/MS in this Standard, though it is liable to vary in accordance with an apparatus or analytical conditions, are 0.1 pg for tetrachlorinated compounds and pentachlorinated compounds, 0.2 pg for hexachlorinated compounds and heptachlorinated compounds, 0.5 pg for octachlorinated compounds and 0.2 pg or less for dioxin-like PCBs.

2 Normative references The following standards contain provisions which, through reference in this text, constitute provisions of this Standard. The most recent editions of the standards (including amendments) indicated below shall be applied.

ons of the standards (including amendments) indicated below shall be applied.					
JIS K 0094	Sampling methods for industrial water and industrial wastewater				
JIS K 0114	General rules for gas chromatographic analysis				
JIS K 0123	General rules for analytical methods in gas chromatography mass spectrometry				
JIS K 0211	Technical terms for analytical chemistry (General part)				
JIS K 0215	Technical terms for analytical chemistry (analytical instrument part)				
JIS K 0557	Water used for industrial water and wastewater analysis				
JIS K 1107	High purity nitrogen				
JIS K 8040	Acetone for pesticide residue and polychlorinated biphenyl analysis				
JIS K 8117	$Dichloromethane\ for\ pesticide\ residue\ and\ polychlorinated\ biphenyl$ analysis				
JIS K 8180	Hydrochloric acid				
JIS K 8550	Silver nitrate				
JIS K 8574	Potassium hydroxide				
JIS K 8637	Sodium thiosulfate pentahydrate				

JIS K 8825 Hexane for pesticide residue and polychlorinated biphenyl analysis

```
JIS K 8951 Sulfuric acid

JIS K 8987 Sodium sulfate

JIS K 9702 Dimethyl sulfoxide

JIS K 9703 2,2,4-Trimethylpentane

JIS R 3503 Glass apparatus for chemical analysis

JIS R 3505 Volumetric glassware

JIS Z 8401 Guide to the rounding of numbers
```

- 3 Definitions For the purposes of this Standard, the definitions given in JIS K 0094, JIS K 0114, JIS K 0123, JIS K 0211 and JIS K 0215, and the following definitions apply.
- a) **dioxins** a generic term of tetra-through octachlorodibenzo-para-dioxins, tetrathrough octachlorodibenzofurans and dioxin-like PCBs
- b) **isomer** each compound whose number of chlorines substituent is the same, but their positions are different
- c) **homologue** a group of compounds whose number of chlorines substituent is the same, but their positions are different
- d) **PCDDs** Polychlorodibenzo-p-dioxins
- e) PCDFs Polychlorodibenzofurans
- f) **TeCDDs** Tetrachlorodibenzo-p-dioxins
- g) PeCDDs Pentachlorodibenzo-p-dioxins
- h) **HxCDDs** Hexachlorodibenzo-p-dioxins
- i) **HpCDDs** Heptachlorodibenzo-p-dioxins
- j) OCDD Octachlorodibenzo-p-dioxin
- k) **TeCDFs** Tetrachlorodibenzofurans
- 1) **PeCDFs** Pentachlorodibenzofurans
- m) HxCDFs Hexachlorodibenzofurans
- n) **HpCDFs** Heptachlorodibenzofurans
- o) OCDF Octachlorodibenzofuran
- p) **isomers substituted by chlorine at 2,3,7,8-positions** total of 17 types of isomers substituted by chlorine at 2,3,7,8-positions as shown below

They are composed of 7 types of tetra-through octachlorodibenzo-para-dioxins, and 10 types of tetra-through octachlorodibenzofurans.

- 1) Tetra- to octachlorodibenzo-para-dioxin (PCDDs)
 - 2,3,7,8-Tetrachlorodibenzo-para-dioxin (2,3,7,8-TeCDD)
 - 1,2,3,7,8-Pentachlorodibenzo-para-dioxin (1,2,3,7,8-PeCDD)

- 1,2,3,4,7,8-Hexachlorodibenzo-para-dioxin (1,2,3,4,7,8-HxCDD)
- 1,2,3,6,7,8-Hexachlorodibenzo-para-dioxin (1,2,3,6,7,8-HxCDD)
- 1,2,3,7,8,9-Hexachlorodibenzo-para-dioxin (1,2,3,7,8,9-HxCDD)
- 1,2,3,4,6,7,8-Heptachlorodibenzo-para-dioxin (1,2,3,4,6,7,8-HpCDD)

Octachlorodibenzo-para-dioxin (OCDD)

2) Tetra- to octachlorodibenzofuran (PCDFs)

- 2,3,7,8-Tetrachlorodibenzofuran (2,3,7,8-TeCDF)
- 1,2,3,7,8-Pentachlorodibenzofuran (1,2,3,7,8-PeCDF)
- 2,3,4,7,8-Pentachlorodibenzofuran (2,3,4,7,8-PeCDF)
- 1,2,3,4,7,8-Hexachlorodibenzofuran (1,2,3,4,7,8-HxCDF)
- 1,2,3,6,7,8-Hexachlorodibenzofuran (1,2,3,6,7,8-HxCDF)
- 1,2,3,7,8,9-Hexachlorodibnzofuran (1,2,3,7,8,9-HxCDF)
- 2,3,4,6,7,8-Hexachlorodibenzofuran (2,3,4,6,7,8-HxCDF)
- 1,2,3,4,6,7,8-Heptachlorodibenzofuran (1,2,3,4,6,7,8-HpCDF)
- 1,2,3,4,7,8,9-Heptachlorodibenzofuran (1,2,3,4,7,8,9-HpCDF)

Octachlorodibenzofuran (OCDF)

- q) PCBs Polychlorobiphenyl
- r) TeCBs Tetrachlorobiphenyl
- s) **PeCBs** Pentachlorobiphenyl
- t) **HxCBs** Hexachlorobiphenyl
- u) **HpCBs** Heptachlorobiphenyl
- v) **dioxin-like PCBs** (**DL-PCB**) polychlorobiphenyl (PCBs) which include compounds where ortho positions (2,2',6 and 6') are not substituted by chlorine (non-ortho compounds) and mono-ortho compounds having one substituted chlorine at the ortho position (mono-ortho compounds)

It is also called coplanar PCB.

1) Non-ortho compounds

- 3,4,4',5-Tetrachlorobiphenyl [3,4,4',5-TeCB (IUPAC* No. 81)]
- Note * Abbreviation of International Union of Pure and Applied Chemistry.
- 3,3',4,4'-Tetrachlorobiphenyl [3,3',4,4'-TeCB (IUPAC No. 77)]
- 3,3',4,4',5-Pentachlorobiphenyl [3,3',4,4',5-PeCB (IUPAC No. 126)]
- 3,3',4,4',5,5'-Hexachlorobiphenyl [3,3',4,4',5,5'-HxCB (IUPAC No. 169)]

2) Mono-ortho compounds

- 2,3,3',4,4'-Pentachlorobiphenyl [2,3,3'4,4'-PeCB (IUPAC No. 105)]
- 2,3,4,4',5-Pentachlorobiphenyl [2,3,4,4',5-PeCB (IUPAC No. 114)]
- 2,3',4,4',5-Pentachlorobiphenyl [2,3',4,4',5-PeCB (IUPAC No. 118)]

2',3,4,4',5-Pentachlorobiphenyl [2',3,4,4',5-PeCB (IUPAC No. 123)]
2,3,3',4,4',5-Hexachlorobiphenyl [2,3,3',4,4',5-HxCB (IUPAC No. 156)]
2,3,3',4,4',5'-Hexachlorobiphenyl [2,3,3',4,4',5'-HxCB (IUPAC No. 157)]
2,3',4,4',5,5'-Hexachlorobiphenyl [2,3',4,4',5,5'-HxCB (IUPAC No. 167)]
2,3,3',4,4',5,5'-Heptachlorobiphenyl [2,3,3',4,4',5,5'-HpCB (IUPAC No. 189)]

- w) the minimum limit of detection for the apparatus the minimum value that can be detected with the GC/MS used for the measurement
- x) the minimum limit of detection for the analytical method the minimum value that can be detected in the procedure of the operation from pretreatment of the sample to the measurement with GC/MS
- y) the minimum limit of detection for the sample the minimum concentration that can be detected for the sample
- z) the minimum limit of determination for the apparatus the minimum value that can be determined with the GC/MS used for the measurement
- aa) the minimum limit of determination for the analytical method the minimum value which can be determined in the procedure of the operation from pretreatment of the sample to the measurement with GC/MS

In general, approximately 3-fold errors may be estimated for the value in the vicinity of the minimum limit of the detection, to compare with the values obtained near the minimum limit of the determination.

- ab) the minimum limit of determination for the sample the minimum concentration that can be determined in the sample
- ac) **TEF** 2,3,7,8-TeCDD toxic equivalency factor
- ad) TEQ 2,3,7,8-TeCDD toxic equivalency quantity
- ae) RRF relative response factor
- 4 Outline of the analytical method After the dioxins in industrial water and waste water shall be extracted, they shall be cleaned up, identified and determined using a GC/MS. The flow diagram of the analysis is shown in figure 1.

Remarks: Because dioxins are highly toxic, inhalation, accidental ingestion or direct dermal contact with them shall be avoided as much as possible. The pretreatment room and laboratory shall be well-ventilated, and the management of waste water and wastes shall also be sufficiently carried out. Inhalation or accidental ingestion of other reagents, solvents, etc. may be detrimental to the health of technicians and for this reason, the utmost care shall be taken when handling them and the laboratory shall be sufficiently ventilated.