

Translated and Published by Japanese Standards Association

$JIS \ K \ 0102^{\,:\, _{2016}}$

Testing methods for industrial wastewater

ICS 13.060.25;13.060.30;13.060.50 Reference number : JIS K 0102 : 2016 (E)

Date of Establishment: 1964-02-01 Date of Revision: 2016-03-22 Date of Public Notice in Official Gazette: 2016-03-22 Investigated by: Japanese Industrial Standards Committee Standards Board for ISO area Technical Committee on Chemical Products and Analytical Methods

JIS K 0102:2016, First English edition published in 2016-09

Translated and published by: Japanese Standards Association Mita MT Building, 3-13-12, Mita, Minato-ku, Tokyo, 108-0073 JAPAN

> In the event of any doubts arising as to the contents, the original JIS is to be the final authority.

© JSA 2016

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

Printed in Japan

KK/AT

Contents

Page

1	Scope1		
2	Common matters		
3 3.1 3.2 3.3	Sample		
4	Flow rate		
5 5.1 5.2 5.3 5.4 5.5	Pretreatment of sample		
6	Expression of results		
7 7.1 7.2	Temperature13Atmospheric temperature13Water temperature13		
8	Appearance14		
9	Transparency15		
$10 \\ 10.1 \\ 10.2$	Odor and threshold odor number (TON) Odor Threshold odor number (TON)		
$11 \\ 11.1 \\ 11.2$	Chromaticity		
$\begin{array}{c} 12\\ 12.1 \end{array}$	pH29 Glass-electrode method29		
13	Electrical conductivity		
$14 \\ 14.1 \\ 14.2$	Suspended matter and evaporation residue		

$14.3 \\ 14.4 \\ 14.5$	Soluble evaporation residue45Ignition residue45Ignition loss46
$15 \\ 15.1 \\ 15.2$	Acid consumption47Acid consumption (pH 4.8)47Acid consumption (pH 8.3)48
$16 \\ 16.1 \\ 16.2 \\ 16.3$	Alkali consumption50Alkali consumption (pH 8.3)50Alkali consumption (pH 4.8)52Alkali consumption (Free acid)53
17	Oxygen demand by potassium permanganate at 100 $^{\circ}C~(COD_{Mn})$ 55
18	Missing number58
19	Oxygen demand by alkaline potassium permanganate $(COD_{\rm OH})$ 59
$20 \\ 20.1 \\ 20.2$	Oxygen demand by potassium dichromate (COD_{Cr})
21	Biochemical oxygen demand (BOD)69
$22 \\ 22.1 \\ 22.2$	Total organic carbon (TOC)
23	Total oxygen demand (TOD)86
24 24.1 24.2 24.3 24.4	Hexane extracts89Sampling89Extraction method91Extraction method by extraction container94Collecting-concentration and extraction method96
25	Missing number
26	Missing number
27	Missing number
$28 \\ 28.1 \\ 28.2$	Phenols 99 Phenols 99 p-Cresols 106
29 29.1	Missing number
$30 \\ 30.1 \\ 30.2$	Surfactants109Anionic surfactants109Nonionic surfactants116

31 31.1 31.2	Pesticides
 31.3 32 32.1 32.2 32.3 32.4 	Ediphenphos (EDDP) 135 Dissolved oxygen 136 Iodometry 136 Miller's modification 140 Membrane electrode method 142 Optical sensor method 145
33 33.1 33.2 33.3 33.4	Residual chlorine149o-Tolidine colorimetry149Diethyl-p-phenylenediammonium (DPD) colorimetry153Iodometry155Diethyl-p-phenylenediammonium (DPD) absorptiometry158
3434.134.234.334.4	Fluorine compound161Lanthanum-alizarin complexone absorptiometry161Ion-selective electrode method165Ion chromatography169Flow analysis169
$35 \\ 35.1 \\ 35.2 \\ 35.3$	Chloride ion (Cl ⁻) 170 Silver-nitrate titration method 170 Ion-selective electrode method 172 Ion chromatography 175
$36 \\ 36.1 \\ 36.2$	Iodide ion (I ⁻) 183 Iodine-extraction absorptiometry 183 Iodometry 184
$37 \\ 37.1 \\ 37.2$	Bromide ion (Br ⁻)
38 38.1 38.2 38.3 38.4 38.5	Cyanide compound190Pretreatment190Pyridine-pyrazolone absorptiometry1964-Pyridinecarboxylic acid-pyrazolone absorptiometry199Ion-selective electrode method201Flow analysis203
39 39.1 39.2	$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{c} 40\\ 40.1 \end{array}$	Sulfite ion $(\mathrm{SO_3}^{2^-})$

41	Sulfate ion $(SO_4^{2^-})$			
41.1	Barium chromate absorptiometry21			
41.2	Gravimetry			
41.3	Ion chromatography21			
42	Ammonium ion (NH_4^+)			
42.1	Pretreatment (distillation)			
42.2	Indophenol blue absorptiometry			
42.3	Neutralization titrimetry			
42.4	Ion-selective electrode method			
42.5	Ion chromatography232			
42.6	Flow analysis233			
43	Nitrite ion (NO_2^{-}) and nitrate ion (NO_3^{-})			
43.1	Nitrite ion (NO ₂ ⁻)234			
43.2	Nitrate ion (NO ₃ ⁻) ····································			
44	Organic nitrogen249			
44.1	Pretreatment (Kjeldahl method)249			
44.2	Indophenol blue absorptiometry251			
44.3	Neutralization titrimetry			
45	Total nitrogen			
45.1	Summation method253			
45.2	Ultraviolet absorptiometry255			
45.3	Hydrazinium sulfate reduction method258			
45.4	Copper-cadmium column reduction method262			
45.5	Thermal decomposition method264			
45.6	Flow analysis266			
46	Phosphorus compound and total phosphorus267			
46.1	Phosphate ion (PO_4^{3-}) 267			
46.2	Hydrolytic phosphorus271			
46.3	Total phosphorus272			
47	Boron (B)281			
47.1	Methylene blue absorptiometry281			
47.2	Azomethine H absorptiometry283			
47.3	ICP atomic emission spectrometry			
47.4	ICP mass spectrometry			
48	Sodium (Na)289			
48.1	Flame photometry			
48.2	Flame atomic absorption spectrometry			
48.3	Ion chromatography			
49	Potassium (K)297			
49.1	Flame photometry			
49.2	Flame atomic absorption spectrometry			

49.3	Ion chromatography	299
$50 \\ 50.1 \\ 50.2 \\ 50.3 \\ 50.4$	Calcium (Ca) Chelatometric titration Flame atomic absorption spectrometry ICP atomic emission spectrometry Ion chromatography	300 300 303 305 307
$51 \\ 51.1 \\ 51.2 \\ 51.3 \\ 51.4$	Magnesium (Mg) Chelatometric titration Flame atomic absorption spectrometry ICP atomic emission spectrometry Ion chromatography	308 308 310 311 311
$52 \\ 52.1 \\ 52.2 \\ 52.3 \\ 52.4 \\ 52.5$	Copper (Cu) Diethyldithiocarbamic acid absorptiometry Flame atomic absorption spectrometry Electrothermal atomic absorption spectrometry ICP atomic emission spectrometry	 312 312 315 320 321 327
53 53.1 53.2 53.3 53.4	Zinc (Zn) Flame atomic absorption spectrometry Electrothermal atomic absorption spectrometry ICP atomic emission spectrometry ICP mass spectrometry	333 333 334 335 335
$54 \\ 54.1 \\ 54.2 \\ 54.3 \\ 54.4$	Lead (Pb) Flame atomic absorption spectrometry Electrothermal atomic absorption spectrometry ICP atomic emission spectrometry ICP mass spectrometry	336 336 337 338 338
55 55.1 55.2 55.3 55.4	Cadmium (Cd) Flame atomic absorption spectrometry Electrothermal atomic absorption spectrometry ICP atomic emission spectrometry ICP mass spectrometry	339 339 341 342 342
56 56.1 56.2 56.3 56.4 56.5	Manganese (Mn) Periodate absorptiometry Flame atomic absorption spectrometry Electrothermal atomic absorption spectrometry ICP atomic emission spectrometry	343 343 345 346 347 347
$57 \\ 57.1 \\ 57.2$	Iron (Fe) Phenanthroline absorptiometry Flame atomic absorption spectrometry	348 348 351

$\begin{array}{c} 57.3\\57.4\end{array}$	Electrothermal atomic absorption spectrometry
58 58.1 58.2 58.3 58.4 58.5	Aluminium (Al)354Quinolinol absorptiometry354Flame atomic absorption spectrometry358Electrothermal atomic absorption spectrometry359ICP atomic emission spectrometry360ICP mass spectrometry362
59 59.1 59.2 59.3 59.4	Nickel (Ni)363Dimethylglyoxime absorptiometry363Flame atomic absorption spectrometry365ICP atomic emission spectrometry366ICP mass spectrometry366
60 60.1 60.2 60.3 60.4	Cobalt (Co)367Nitroso R salt absorptiometry367Flame atomic absorption spectrometry369ICP atomic emission spectrometry370ICP mass spectrometry370
61 61.1 61.2 61.3 61.4	Arsenic (As)371Diethyldithiocarbamic acid silver salt absorptiometry371Atomic absorption spectrometry by hydride375ICP atomic emission spectrometry by hydride381ICP mass spectrometry382
62 62.1 62.2 62.3 62.4	Antimony (Sb)384Rhodamine B absorptiometry384Atomic absorption spectrometry by hydride387ICP atomic emission spectrometry by hydride389ICP mass spectrometry391
63 63.1 63.2 63.3 63.4	Tin (Sn)394Phenylfluorone absorptiometry394Quercetin absorptiometry396ICP atomic emission spectrometry398ICP mass spectrometry399
$64 \\ 64.1 \\ 64.2 \\ 64.3$	Bismuth (Bi)400Iodide-extraction absorptiometry400ICP atomic emission spectrometry402ICP mass spectrometry403
$65 \\ 65.1 \\ 65.2$	Chromium (Cr) 404 Total chromium 404 Chromium (VI) [Cr (VI)] 410

$66 \\ 66.1 \\ 66.2$	Mercury (Hg)			
67 67.1 67.2 67.3 67.4	Selenium (Se)4323,3'-Diaminobenzidine absorptiometry432Atomic absorption spectrometry by hydride434ICP atomic emission spectrometry by hydride437ICP mass spectrometry438			
$68 \\ 68.1 \\ 68.2 \\ 68.3$	Molybdenum (Mo Thiocyanate abso ICP atomic emiss ICP mass spectro	a) 439 rptiometry 439 sion spectrometry 441 ometry 441		
69 69.1 69.2 69.3	Tungsten (W) Thiocyanate abso ICP atomic emiss ICP mass spectro	442 rptiometry 442 sion spectrometry 444 ometry 444		
70 70.1 70.2 70.3 70.4 70.5	Vanadium (V) N-Benzoyl-N-phe Flame atomic abs Electrothermal a ICP atomic emiss ICP mass spectro	445 nylhydroxylamine absorptiometry 445 sorption spectrometry 446 tomic absorption spectrometry 447 sion spectrometry 448 ometry 448		
71	Acute toxicity tes	t by fish		
$72 \\72.1 \\72.2 \\72.3 \\72.4 \\72.5 \\72.6$	Bacterial test455Missing number455Standard plate count bacteria455Coliform organisms455Heterotrophic bacteria455Total bacteria455Legionella455			
73 73.1 73.2	Uranium (U)			
Anne	x 1 (informative)	Supplement469		
Anne	x 2 (informative)	Comparison table between JIS and corresponding International Standards		

Foreword

This translation has been made based on the original Japanese Industrial Standard revised by the Minister of Economy, Trade and Industry through deliberations at the Japanese Industrial Standards Committee in accordance with the Industrial Standardization Law.

Consequently JIS K 0102:2013 is replaced with this Standard.

This **JIS** document is protected by the Copyright Law.

Attention is drawn to the possibility that some parts of this Standard may conflict with patent rights, applications for a patent after opening to the public or utility model rights. The relevant Minister and the Japanese Industrial Standards Committee are not responsible for identifying any of such patent rights, applications for a patent after opening to the public or utility model rights.

Testing methods for industrial wastewater

1 Scope This Japanese Industrial Standard specifies the testing methods for wastewater discharged from factories (including offices, hereafter the same).

NOTES 1 For each of the test methods in this Standard which has a corresponding International Standard(s), the number of the International Standard and the symbol of degree of correspondence are shown in the respective clauses.

In the above case, where any modification has been made to the technical contents of the corresponding International Standard, the modification and its explanation are shown in the list of modifications in Annex 2.

- 2 Standards shown in attached table 1 contain provisions which, through reference in this text, constitute provisions of this Standard. The most recent editions (including amendments) of the standards listed apply.
- 2 Common matters The common matters shall be as follows.
- a) **General rules** The general matters of chemical analysis shall be in accordance with **JIS K 0050**.
- b) **Definitions** For the purpose of this Standard, the terms and definitions given in **JIS K 0101**, **JIS K 0211** and **JIS K 0215** apply.
- c) **Gas chromatography** The general matters of gas chromatography shall be in accordance with **JIS K 0114**.
- d) **Absorptiometry** The general matters of absorptiometry shall be in accordance with **JIS K 0115**.
- e) **Inductively coupled plasma atomic emission spectrometry** The general matters of inductively coupled plasma atomic emission spectrometry (hereafter referred to as "ICP atomic emission spectrometry") shall be in accordance with **JIS K 0116**.
- f) **High frequency plasma mass spectrometry** The general matters of high frequency plasma mass spectrometry (hereafter referred to as "ICP mass spectrometry") shall be in accordance with **JIS K 0133**.
- g) **Infrared spectrophotometry** The general matters of infrared spectrophotometry shall be in accordance with **JIS K 0117**.
- h) Atomic absorption spectrometry There are a flame atomic absorption spectrometry, an electric heating type atomic absorption method (hereafter referred to as "electrothermal atomic absorption spectrometry") and other atomic absorption methods. The general matters of these methods shall be in accordance with JIS K 0121.