
 ISO/IEC 23360-1-2:2021(E)

© 2021 ISO/IEC – All rights reserved 345

 This request restarts a traced process, given in pid, which has been stopped.
The data parameter may point to a signal ID to deliver to the traced process;
if it is zero or SIGSTOP, no signal is delivered to the child. The addr is
ignored.

PTRACE_DETACH
 This request performs the same function, in the same way, as PTRACE_CONT,

except that the tracing relationship between the tracing and traced processes
is also undone. If the trace was initiated using PTRACE_ATTACH, the original
parent-child relationships that existed beforehand are restored.

PTRACE_KILL
 This request causes a SIGKILL signal to be sent to the traced process specified

in pid. The addr and data parameters are ignored.

PTRACE_PEEKTEXT
 This request reads a word at the location addr of the traced process pid, and

returns it to the caller. The data parameter is ignored.

PTRACE_PEEKDATA
 This request performs identically to the PTRACE_PEEKTEXT request.

PTRACE_PEEKUSER
 This request reads a word at offset addr in the USER area of the traced

process pid. The offset must be word-aligned. The data parameter is ignored.

PTRACE_POKETEXT
 This request writes the word pointed at by data to the location addr of the

traced process pid.

PTRACE_POKEDATA
 This request performs identically to the PTRACE_POKETEXT request.

PTRACE_POKEUSER
 This request writes the word pointed at by data to offset addr in the USER

area of the traced process pid. The offset must be word-aligned.
Implementations may choose to disallow some modifications to the USER
area.

PTRACE_GETREGS
 This request copies the general purpose registers from the traced process pid

to the tracing process at location data. This parameter may not be available
on all architectures. The addr parameter is ignored.

PTRACE_GETFPREGS
 This request copies the floating point registers from the traced process pid

to the tracing process at location data. This parameter may not be available
on all architectures. The addr parameter is ignored.

PTRACE_SETREGS

https://www.normsplash.com/ISO/193617746/ISO-IEC-23360-1-2?src=spdf

ISO/IEC 23360-1-2:2021(E)

346 © 2021 ISO/IEC – All rights reserved

 This request writes the general purpose registers to the traced process pid
from the tracing process at location data. This parameter may not be
available on all architectures. Implementations may choose to disallow some
register modifications. The addr parameter is ignored.

PTRACE_SETFPREGS
 This request writes the floating point registers to the traced process pid from

the tracing process at location data. This parameter may not be available on
all architectures. Implementations may choose to disallow some register
modifications. The addr parameter is ignored.

PTRACE_GETSIGINFO
 This request writes information about the signal which caused the traced

process pid to stop to the tracing process at location data, as a siginfo_t. The
addr parameter is ignored.

PTRACE_SETSIGINFO
 This request writes signal information to the traced process pid from a

siginfo_t structure pointed at by data, such that it will be used as the signal
information by the traced process when it is resumed. The addr parameter
is ignored.

PTRACE_GETEVENTMSG
 This request stores information about the most recent ptrace event for the

traced process pid in the unsigned long pointed at by data. For
PTRACE_EVENT_EXIT, this is the exit status of the traced process. For
PTRACE_EVENT_FORK, PTRACE_EVENT_VFORK, or PTRACE_EVENT_CLONE, this
is the PID of the newly created process. The addr parameter is ignored.

PTRACE_SYSCALL
 This request performs the same function, in the same way, as PTRACE_CONT,

but with the additional step of causing the traced process to stop at the next
entry to or exit from a system call. The usual events that would also cause
the traced process to stop continue to do so.

PTRACE_SINGLESTEP
 This request performs the same function, in the same way, as PTRACE_CONT,

but with the additional step of causing the traced process to stop after
execution of a single instruction. The usual events that would also cause the
traced process to stop continue to do so.

PTRACE_SYSEMU
 This request performs the same function, in the same way, as PTRACE_CONT,

but with the additional step of causing the traced process to stop on entry to
the next syscall, which will then not be executed.

PTRACE_SYSEMU_SINGLESTEP

https://www.normsplash.com/ISO/193617746/ISO-IEC-23360-1-2?src=spdf

 ISO/IEC 23360-1-2:2021(E)

© 2021 ISO/IEC – All rights reserved 347

 This request performs the same function, in the same way, as PTRACE_CONT,
but with the additional step of causing the traced process to stop on entry to
the next syscall, which will then not be executed. If the next instruction is not
itself a syscall, the traced process will stop after a single instruction is
executed.

PTRACE_SETOPTIONS
 This request sets ptrace() options for the traced process pid from the

location pointed to by data. The addr is ignored. This location is interpreted
as a bitmask of options, as defined by the following flags:

PTRACE_O_TRACESYSGOOD
 This option, when set, causes syscall traps to set bit 7 in the signal

number.

PTRACE_O_TRACEFORK
 This option, when set, causes the traced process to stop when it calls

fork(2). The original traced process will stop with SIGTRAP |
PTRACE_EVENT_FORK << 8, and the new process will be stopped with
SIGSTOP. The new process will also be traced by the tracing process, as
if the tracing process had sent the PTRACE_ATTACH request for that
process. The PID of the new process may be retrieved with the
PTRACE_GETEVENTMSG request.

PTRACE_O_TRACEVFORK
 This option, when set, causes the traced process to stop when it calls

vfork(2). The original traced process will stop with SIGTRAP |
PTRACE_EVENT_VFORK << 8, and the new process will be stopped
with SIGSTOP. The new process will also be traced by the tracing
process, as if the tracing process had sent the PTRACE_ATTACH
request for that process. The PID of the new process may be retrieved
with the PTRACE_GETEVENTMSG request.

PTRACE_O_TRACECLONE
 This option, when set, causes the traced process to stop when it calls

clone(2). The original traced process will stop with SIGTRAP |
PTRACE_EVENT_CLONE << 8, and the new process will be stopped
with SIGSTOP. The new process will also be traced by the tracing
process, as if the tracing process had sent the PTRACE_ATTACH
request for that process. The PID of the new process may be retrieved
with the PTRACE_GETEVENTMSG request. Under certain
circumstances, clone(2) calls by the traced process will generate events
and information consistent with the PTRACE_O_TRACEVFORK or
PTRACE_O_TRACEFORK options above.

PTRACE_O_TRACEEXEC
 This option, when set, causes the traced process to stop when it calls

execve(2). The traced process will stop with SIGTRAP |
PTRACE_EVENT_EXEC << 8.

PTRACE_O_TRACEVFORKDONE

https://www.normsplash.com/ISO/193617746/ISO-IEC-23360-1-2?src=spdf

ISO/IEC 23360-1-2:2021(E)

348 © 2021 ISO/IEC – All rights reserved

 This option, when set, causes the traced process to stop at the
completion of its next vfork(2) call. The traced process will stop with
SIGTRAP | PTRACE_EVENT_EXEC << 8.

PTRACE_O_TRACEEXIT
 This option, when set, causes the traced process to stop upon exit. The

traced process will stop with SIGTRAP | PTRACE_EVENT_EXIT << 8,
and its exit status can be retrieved with the PTRACE_GETEVENTMSG
request. The stop is guaranteed to be early in the process exit process,
meaning that information such as register status at exit is preserved.
Upon continuing, the traced process will immediately exit.

Return Value
On success, ptrace() shall return the requested data for PTRACE_PEEK requests,
or zero for all other requests. On error, all requests return -1, with errno set to an
appropriate value. Note that -1 may be a valid return value for PTRACE_PEEK
requests; the application is responsible for distinguishing between an error
condition and a valid return value in that case.

Errors
On error, ptrace() shall set errno to one of the regular error values below:

EBUSY
 An error occurred while allocating or freeing a debug register.

EFAULT
 The request attempted to read from or write to an invalid area in the memory

space of the tracing or traced process.

EIO
 The request was invalid, or it attempted to read from or write to an invalid

area in the memory space of the tracing or traced process, or it violated a
word-alignment boundary, or an invalid signal was given to continue the
traced process.

EINVAL
 An attempt was made to set an invalid option.

EPERM
 The request to trace a process was denied by the system.

ESRCH
 The process requested does not exist, is not being traced by the current

process, or is not stopped.

https://www.normsplash.com/ISO/193617746/ISO-IEC-23360-1-2?src=spdf

 ISO/IEC 23360-1-2:2021(E)

© 2021 ISO/IEC – All rights reserved 349

putwc_unlocked

Name
putwc_unlocked — non-thread-safe putwc

Description
putwc_unlocked() is the same as putwc(), except that it need not be thread-safe.
That is, it may only be invoked in the ways which are legal for getc_unlocked().

putwchar_unlocked

Name
putwchar_unlocked — non-thread-safe putwchar

Description
putwchar_unlocked() is the same as putwchar(), except that it need not be
thread-safe. That is, it may only be invoked in the ways which are legal for
getc_unlocked().

pwrite64

Name
pwrite64 — write on a file (Large File Support)

Synopsis
#include <unistd.h>
ssize_t pwrite64(int fd, const void * buf, size_t count, off64_t offset);

Description
pwrite64() shall write count bytes from buf to the file associated with the open
file descriptor fd, at the position specified by offset, without changing the file
position.

pwrite64() is a large-file version of the pwrite() function as defined in POSIX
1003.1-2008 (ISO/IEC 9945-2009). It differs from pwrite() in that the offset
parameter is an off64_t instead of an off_t

Return Value
On success, pwrite64() shall return the number of bytes actually written.
Otherwise pwrite() shall return -1 and set errno to indicate the error.

Errors
See pwrite() for possible error values.

https://www.normsplash.com/ISO/193617746/ISO-IEC-23360-1-2?src=spdf

ISO/IEC 23360-1-2:2021(E)

350 © 2021 ISO/IEC – All rights reserved

random_r

Name
random_r — reentrantly generate pseudorandom numbers in a uniform
distribution

Synopsis
#include <stdlib.h>
int random_r(struct random_data * buffer, int32_t * result);

Description
The interface random_r() shall function in the same way as the interface
random(), except that random_r() shall use the data in buffer instead of the
global random number generator state.

Before it is used, buffer must be initialized, for example, by calling lcong48_r(),
seed48_r(), or srand48_r(), or by filling it with zeroes.

readdir64_r

Name
readdir64_r — read a directory (Large File Support)

Synopsis
#include <dirent.h>
int readdir64_r(DIR * dirp, struct dirent64 * entry, struct dirent64
* * result);

Description
The readdir64_r() function is a large file version of readdir_r(). It shall
behave as readdir_r() in POSIX 1003.1-2008 (ISO/IEC 9945-2009), except that
the entry and result arguments are dirent64 structures rather than dirent.

Return Value
See readdir_r().

Errors
See readdir_r().

https://www.normsplash.com/ISO/193617746/ISO-IEC-23360-1-2?src=spdf

 ISO/IEC 23360-1-2:2021(E)

© 2021 ISO/IEC – All rights reserved 351

regexec

Name
regexec — regular expression matching

Description
The regexec() function shall behave as specified in POSIX 1003.1-2008 (ISO/IEC
9945-2009), except with differences as listed below.

Differences
Certain aspects of regular expression matching are optional; see Regular
Expressions.

scandir64

Name
scandir64 — scan a directory (Large File Support)

Synopsis
#include <dirent.h>
int scandir64(const char * dir, const struct dirent64 ** namelist,
int (*sel) (const struct dirent64 *), int (*compar) (const struct
dirent64 **, const struct dirent64 **));

Description
scandir64() is a large-file version of the scandir() function as defined in
POSIX 1003.1-2008 (ISO/IEC 9945-2009). If differs only in that the namelist and
the paramters to the selection function sel and comparison function compar are
of type dirent64 instead of type dirent.

https://www.normsplash.com/ISO/193617746/ISO-IEC-23360-1-2?src=spdf

ISO/IEC 23360-1-2:2021(E)

352 © 2021 ISO/IEC – All rights reserved

scanf

Name
scanf — convert formatted input

Description
The scanf() family of functions shall behave as described in POSIX 1003.1-2008
(ISO/IEC 9945-2009), except as noted below.

Differences
The %s, %S and %[conversion specifiers shall accept an option length modifier a,
which shall cause a memory buffer to be allocated to hold the string converted.
In such a case, the argument corresponding to the conversion specifier should be
a reference to a pointer value that will receive a pointer to the allocated buffer. If
there is insufficient memory to allocate a buffer, the function may set errno to
ENOMEM and a conversion error results.

Note: This directly conflicts with the ISO C (1999) usage of %a as a conversion
specifier for hexadecimal float values. While this conversion specifier should be
supported, a format specifier such as "%aseconds" will have a different meaning on
an LSB conforming system.

https://www.normsplash.com/ISO/193617746/ISO-IEC-23360-1-2?src=spdf

 ISO/IEC 23360-1-2:2021(E)

© 2021 ISO/IEC – All rights reserved 353

sched_getaffinity

Name
sched_getaffinity — retrieve the affinity mask of a process

Synopsis
#include <sched.h>
int sched_getaffinity(pid_t pid, unsigned int cpusetsize, cpu_set_t *
mask);

Description
sched_getaffinity() shall retrieve the affinity mask of a process.

The parameter pid specifies the ID for the process. If pid is 0, then the calling
process is specified instead.

The parameter cpusetsize specifies the length of the data pointed to by mask, in
bytes. Normally, this parameter is specified as sizeof(cpu_set_t).

Return Value
On success, sched_getaffinity() shall return 0, and the structure pointed to
by mask shall contain the affinity mask of the specified process.

On failure, sched_getaffinity() shall return -1 and set errno as follows.

Errors

EFAULT

 Bad address.

EINVAL

 mask does not specify any processors that exist in the system, or cpusetsize
is smaller than the kernel's affinity mask.

ESRCH

 The specified process could not be found.

See Also
sched_setscheduler(), sched_setaffinity().

https://www.normsplash.com/ISO/193617746/ISO-IEC-23360-1-2?src=spdf

ISO/IEC 23360-1-2:2021(E)

354 © 2021 ISO/IEC – All rights reserved

sched_setaffinity

Name
sched_setaffinity — set the CPU affinity mask for a process

Synopsis
#include <sched.h>
int sched_setaffinity(pid_t pid, unsigned int cpusetsize, cpu_set_t *
mask);

Description
sched_setaffinity() shall set the CPU affinity mask for a process.

The parameter pid specifies the ID for the process. If pid is 0, then the calling
process is specified instead.

The parameter cpusetsize specifies the length of the data pointed to by mask, in
bytes. Normally, this parameter is specified as sizeof(cpu_set_t).

The parameter mask specifies the new value for the CPU affinity mask. The
structure pointed to by mask represents the set of CPUs on which the process may
run. If mask does not specify one of the CPUs on which the specified process is
currently running, then sched_setaffinity() shall migrate the process to one
of those CPUs.

Setting the mask on a multiprocessor system can improve performance. For
example, setting the mask for one process to specify a particular CPU, and then
setting the mask of all other processes to exclude the CPU, dedicates the CPU to
the process so that the process runs as fast as possible. This technique also
prevents loss of performance in case the process terminates on one CPU and starts
again on another, invalidating cache.

Return Value
On success, sched_setaffinity() shall return 0.

On failure, sched_setaffinity() shall return -1 and set errno as follows.

Errors

EFAULT

 Bad address.

EINVAL

 mask does not specify any processors that exist in the system, or cpusetsize
is smaller than the kernel's affinity mask.

EPERM

 Insufficient privileges. The effective user ID of the process calling
sched_setaffinity() is not equal to the user ID or effective user ID of the
specified process, and the calling process does not have appropriate
privileges.

ESRCH

https://www.normsplash.com/ISO/193617746/ISO-IEC-23360-1-2?src=spdf

 ISO/IEC 23360-1-2:2021(E)

© 2021 ISO/IEC – All rights reserved 355

 The specified process could not be found.

See Also
sched_setscheduler(), sched_getaffinity().

sched_setscheduler

Name
sched_setscheduler — set scheduling policy and parameters

Synopsis
#include <sched.h>
int sched_setscheduler(pid_t pid, int policy, const struct sched_param
* param);

Description
The sched_setscheduler() shall behave as described in POSIX 1003.1-2008
(ISO/IEC 9945-2009), except as noted below.

Return Value
On success, 0 is returned instead of the former scheduling policy.

seed48_r

Name
seed48_r — reentrantly generate pseudorandom numbers in a uniform
distribution

Synopsis
#include <stdlib.h>
int seed48_r(unsigned short[3] seed16v, struct drand48_data * buffer);

Description
The interface seed48_r() shall function in the same way as the interface
seed48(), except that seed48_r() shall use the data in buffer instead of the
global random number generator state.

https://www.normsplash.com/ISO/193617746/ISO-IEC-23360-1-2?src=spdf

