
ISO/IEC/IEEE 12207:2017(E) 

71	©	ISO/IEC	2017	–	All	rights	reserved	©	IEEE	2017	–	All	rights	reserved 

6.4.5 Design Definition process 

6.4.5.1 Purpose The	 purpose	 of	 the	 Design	 Definition	 process	 is	 to	 provide	 sufficient	 detailed	 data	 and	 information	 about	 the	system	and	its	elements	to	enable	the	implementation	consistent	with	architectural	entities	as	defined	in	models	and	views	of	the	system	architecture.	For	 software	 systems,	 design	 activities	 typically	 iterate	 with	 activities	 in	 System/Software	 Requirements	Definition	 and	 Architecture	 Definition.	 Design	 definition	 is	 typically	 applied	 iteratively	 and	 incrementally	 to	develop	a	detailed	design,	 including	software	elements,	 interfaces,	databases,	and	user	documentation.	Software	design	 is	 usually	 concurrent	 with	 software	 implementation,	 integration,	 verification,	 and	 validation.	 Annex	 H	discusses	 software	 design	 using	 agile	methods.	 During	 design	 and	 implementation,	 further	 process	 application	refines	allocation	of	evolving	requirements	among	software	elements.	NOTE	1	 The	Design	Definition	process	is	driven	by	requirements	that	have	been	vetted	through	the	architecture	and	more	detailed	 analyzes	 of	 feasibility.	 Architecture	 focuses	 on	 suitability,	 viability,	 and	 desirability,	 whereas	 design	 focuses	 on	compatibility	 with	 technologies	 and	 other	 design	 elements	 and	 feasibility	 of	 implementation	 and	 integration.	 An	 effective	architecture	is	as	design‐agnostic	as	possible	to	allow	for	maximum	flexibility	in	the	design	trade	space.	NOTE	2	 This	 process	 provides	 feedback	 to	 the	 software	 system	 architecture	 to	 consolidate	 or	 confirm	 the	 allocation,	partitioning	and	alignment	of	architectural	entities.	
6.4.5.2 Outcomes As	a	result	of	the	successful	implementation	of	the	Design	Definition	process:a)	 Design	characteristics	of	each	system	element	are	defined.	b)	 System/software	requirements	are	allocated	to	system	elements.	c)	 Design	enablers	necessary	for	design	definition	are	selected	or	defined.	d)	 Interfaces	between	system	elements	composing	the	system	are	defined	or	refined.	e)	 Design	alternatives	for	system	elements	are	assessed.	f)	 Design	artifacts	are	developed.	g)	 Any	enabling	systems	or	services	needed	for	design	definition	are	available.	h)	 Traceability	 of	 the	 design	 characteristics	 to	 the	 architectural	 entities	 of	 the	 system	 architecture	 is	established. 
 NOTE		 Design	definition	considers	applicable	technologies	and	their	contribution	to	the	system	solution.	Design	provides	the	 ‘implement‐to’	 level	 of	 the	 definition,	 such	 as	 drawings,	 state	 diagrams,	 stories,	 and	 detailed	 design	 descriptions.	 For	software	elements,	this	process	can	result	 in	a	detailed	design	description	that	can	be	verified	against	requirements	and	the	software	 architecture.	 Even	 if	 the	 software	 design	 is	 not	 fully	 specified	 in	 a	 formal	 description,	 it	 is	 sufficiently	 detailed	 to	permit	software	implementation	(construction)	and	test	planning.	
6.4.5.3 Activities and tasks The	project	shall	implement	the	following	activities	and	tasks	in	accordance	with	applicable	organization	policies	and	procedures	with	respect	to	the	Design	Definition	process.	NOTE	 The	 SWEBOK,	 Guide to the Software Engineering Body of Knowledge,	 provides	 detailed	 discussion	 on	 software	design.	This	knowledge	area	addresses	fundamentals,	key	issues,	design	strategies	and	methods,	and	design	notations.	a) Prepare for software system design definition. This	activity	consists	of	the	following	tasks:	

https://www.normsplash.com/ISO/162773964/ISO-IEC-IEEE-12207?src=spdf


ISO/IEC/IEEE 12207:2017(E) 

72	 ©	ISO/IEC	2017	–	All	rights	reserved	©	IEEE	2017	–	All	rights	reserved	

1) Define	the	design	definition	strategy,	consistent	with	the	selected	life	cycle	model	and	anticipated	design	artifacts.	NOTE						The	software	design	strategy	can	include	initial	or	incremental	decomposition	into	system	elements;	creation	of	various	 views	 of	 automated	 procedures,	 data	 structures	 and	 control	 systems;	 selection	 of	 design	 patterns,	 or	progressively	more	detailed	definition	of	objects	and	their	relationships.	2) Select	and	prioritize	design	principles	and	design	characteristics.	NOTE								Design	principles	include	controlling	ideas	such	as	abstraction,	modularization	and	encapsulation,	separation	of	interface	and	implementation,	concurrency,	and	persistence	of	data.	Security	considerations	include	the	principle	of	least	privilege,	 layered	defenses,	 restricted	 access	 to	 system	 services,	 and	other	 considerations	 to	minimize	 and	defend	 the	system	attack	surface.	Design	characteristics	 include,	for	example,	availability,	 fault	tolerance	and	resilience,	scalability,	usability,	capacity	and	performance,	testability,	portability,	and	affordability.	3) Identify	and	plan	for	the	necessary	enabling	systems	or	services	needed	to	support	design	definition.	NOTE						This	includes	identification	of	requirements	and	interfaces	for	the	enabling	systems.	Enabling	systems	for	design	definition	 include	 selection	 of	 software	 and	 system	platforms,	 programming	 languages,	 design	 notations	 and	 tools	 for	collaboration	and	design	development,	design	reuse	repositories	(for	product	lines,	design	patterns,	and	design	artifacts),	and	design	standards.	4) Obtain	or	acquire	access	to	the	enabling	systems	or	services	to	be	used.	NOTE						The	Validation	process	is	used	to	objectively	confirm	that	the	enabling	system	achieves	its	intended	use	for	its	enabling	functions.	b) Establish designs related to each software system element.	This	activity	consists	of	the	following	tasks:	1) Transform	architectural	and	design	characteristics	into	the	design	of	software	system	elements.	NOTE	 Characteristics	 apply	 to	 physical	 and	 logical	 system	 elements,	 such	 as	 database	 structures,	 provisions	 for	memory	and	storage,	software	processes	and	controls,	external	interfaces	such	as	user	interfaces,	or	services.	ISO	9241‐210	provides	human	centred	design/ergonomic	design	guidelines.	2) Define	and	prepare	or	obtain	the	necessary	design	enablers.	NOTE	 Design	 enablers	 include	 models,	 equations,	 algorithms,	 calculations,	 formal	 expressions	 and	 values	 of	parameters,	patterns,	and	heuristics,	which	are	associated	with	design	characteristics	using	adequate	representation	such	as	 drawings,	 logical	 diagrams,	 flowcharts,	 coding	 conventions,	 logic	 patterns,	 information	models,	 business	 rules,	 user	profiles,	 scenarios,	 use	 cases	 or	 user	 stories,	 and	 tables	 of	metrics	 and	 their	 values,	 e.g.,	 function	 points	 or	 user	 story	points.	3) Examine	design	alternatives	and	feasibility	of	implementation.		NOTE	1	 	 	For	 the	 software	 system	 and	 software	 elements,	 typically	 reuse,	 adaptation,	 outsourced	 service,	 or	 new	development	are	examined.	NOTE	2	 	 Assess	 the	 feasibility	 of	 realizing	 design	 characteristics.	 If	 warranted	 by	 assessment	 results,	 examine	 other	alternative	 design	 options	 or	 perform	 trade‐offs	 in	 the	 architecture	 or	 requirements	 when	 design	 characteristics	 are	impractical	to	implement.	4) Refine	or	define	the	interfaces	among	the	software	system	elements	and	with	external	entities.	NOTE	 Interfaces	 are	 identified	 and	 defined	 in	 the	 Architecture	 Definition	 process	 (see	 6.4.4)	 to	 the	 level	 or	 extent	needed	 for	 the	 architecture	 intent	 and	understanding.	These	are	 refined	 in	 the	Design	Definition	process	based	on	 the	design	 characteristics,	 interfaces,	 and	 interactions	 of	 software	 elements	 with	 other	 elements	 composing	 the	 software	system	and	with	external	entities.	Additional	interfaces	are	sometimes	identified	and	defined	that	were	not	addressed	in	the	architecture	definition.	5) Establish	the	design	artifacts.	NOTE	 This	 task	 formalizes	 the	 design	 characteristics	 of	 the	 software	 system	 elements	 through	 dedicated	 artifacts,	depending	on	the	implementation	technology.	Examples	of	artifacts	include	prototypes,	data	models,	pseudocode,	entity‐relationship	 diagrams,	 use	 cases,	 user	 role	 and	 privilege	 matrixes,	 interface	 specifications,	 service	 descriptions,	 and	

https://www.normsplash.com/ISO/162773964/ISO-IEC-IEEE-12207?src=spdf


ISO/IEC/IEEE 12207:2017(E) 

73	©	ISO/IEC	2017	–	All	rights	reserved	©	IEEE	2017	–	All	rights	reserved 

procedures.	Design	artifacts	 are	developed,	 obtained,	 or	modified	 for	 selected	alternatives.	The	data	 is	 associated	with	detailed	acceptable	margins	for	implementation	(if	relevant	at	this	process	or	task	iteration).	c) Assess alternatives for obtaining software system elements. This	activity	consists	of	the	following	tasks:	1) Determine	technologies	required	for	each	element	composing	the	software	system.	NOTE	 Several	technologies	are	sometimes	used	for	a	given	software	system	element,	e.g.,	internet	presence,	embedded	systems,	adaptation	of	open	source	software,	human	operator	roles.	2) Identify	candidate	alternatives	for	the	software	system	elements.	NOTE	 Alternatives	 include	newly	designed	and	constructed	items;	adaptations	of	existing	product	 lines,	components,	objects,	or	services;	or	acquisition	or	reuse	of	Non‐Developed	Items	(NDI).	NDI	include	COTS	(Commercial‐Off‐The‐Shelf)	or	FOSS	(Free	and	Open	Source	Software)	packages	or	elements,	reuse	of	a	previous	design,	or	existing	assets,	including	acquirer	provided	items.	3) Assess	 each	 candidate	 alternative	 against	 criteria	 developed	 from	 expected	 design	 characteristics	 and	element	requirements	to	determine	suitability	for	the	intended	application.	NOTE	 A	make‐or‐buy	decision	and	resulting	 implementation	and	 integration	approach	 typically	 involve	 trade‐offs	of	the	 design	 criteria,	 including	 cost.	 Design	 choices	 commonly	 consider	 enabling	 systems	 required	 to	 test	 the	 candidate	alternative	(test‐driven	design	and	development)	and	sustainability	over	the	system	life,	including	maintenance	costs.	The	Maintenance	process	can	be	used	to	determine	the	suitability	of	the	design	for	long‐term	maintenance	and	sustainability.	4) Choose	the	preferred	alternatives	among	candidate	design	solutions	for	the	software	system	elements.	NOTE		 The	 System	Analysis	 process	 can	be	used	 for	 analyzes	 and	 assessments	 to	 support	 the	Decision	Management	process	in	performing	the	selection.	Design	reviews	are	conducted	using	the	Validation	process.	d) Manage the design. This	activity	consists	of	the	following	tasks:	1) Capture	the	design	and	rationale.	NOTE		 Commonly	captured	information	includes	the	software	system	elements	and	affiliated	requirements	and	design	data,	e.g.,	for	software	elements,	internal	and	external	interfaces,	data	structures,	implementation	and	test	requirements,	unit	aggregation	data	for	integration,	and	test	cases.	Rationale	typically	includes	information	about	major	implementation	options	and	enablers.	The	resultant	design	is	controlled	in	accordance	with	the	strategy.	2) Establish	traceability	between	the	detailed	design	elements,	the	system/software	requirements,	and	the	architectural	entities	of	the	software	system	architecture.	NOTE	1	 	 This	 task	 facilitates	providing	 feedback	to	the	Architecture	Definition	process	 for	potential	modifications,	 for	example,	 to	 modify	 the	 allocation	 of	 software	 system	 elements	 in	 order	 to	 obtain	 the	 expected	 architectural	characteristics;	or	possibly	to	modify	the	expected	architectural	characteristic	due	to	factors	discovered	during	the	design	process,	or	to	make	stakeholders	aware	of	the	potential	impacts.	NOTE	2		 	 Through	the	life	cycle,	bidirectional	traceability	is	maintained	between	the	design	and	the	verification	methods	or	 techniques,	 and	 software	 system	 element	 requirements.	 Allocations	 and	 design	 properties	 are	 assigned	 to	 software	elements,	software	units	and	affiliated	artifacts,	at	a	detailed	enough	level	to	permit	software	testing	and	implementation,	including	construction.	3) Determine	the	status	of	the	software	system	and	element	design.	NOTE	1	 	 The	Measurement	process	 is	used	 to	establish	measures	 for	 the	completeness	and	quality	of	 the	design	as	 it	progresses.	 The	 Verification	 and	 Validation	 processes	 are	 invoked	 to	 verify	 and	 validate	 the	 detailed	 design	 and	implementation	NOTE	2	 	 This	includes	periodic	assessment	of	the	design	characteristics	in	case	of	evolution	of	the	software	system	and	of	 its	 architecture,	 as	well	 as	 forecasting	potential	 obsolescence	of	 components	 and	 technologies,	 their	 replacement	by	others	 over	 time	 in	 the	 life	 cycle	 of	 the	 software	 system,	 and	 the	 consequences	 for	 the	 design	 definition.	 The	 Risk	Management	process	is	typically	applied	to	evaluate	risks	in	the	design	strategy,	initial	design,	and	the	evolving	design.	4) Provide	key	artifacts	and	information	items	that	have	been	selected	for	baselines.	

https://www.normsplash.com/ISO/162773964/ISO-IEC-IEEE-12207?src=spdf


ISO/IEC/IEEE 12207:2017(E) 

74	 ©	ISO/IEC	2017	–	All	rights	reserved	©	IEEE	2017	–	All	rights	reserved	

NOTE	 The	Configuration	Management	process	is	used	to	establish	and	maintain	configuration	items	and	baselines	for	artifacts	 such	 as	 design	models.	 This	 process	 identifies	 candidates	 for	 the	 baseline,	 and	 the	 Information	Management	process	controls	the	information	items,	such	as	design	descriptions	and	specifications.	
6.4.6 System Analysis process 

6.4.6.1 Purpose The	purpose	of	the	System	Analysis	process	 is	to	provide	a	rigorous	basis	of	data	and	information	for	technical	understanding	to	aid	decision‐making	across	the	life	cycle.	The	 System	Analysis	 process	 applies	 to	 the	development	 of	 inputs	needed	 for	 any	 technical	 assessment.	 It	 can	provide	confidence	in	the	utility	and	integrity	of	system	requirements,	architecture,	and	design.	System	analysis	covers	 a	 wide	 range	 of	 differing	 analytic	 functions,	 levels	 of	 complexity,	 and	 levels	 of	 rigor.	 It	 includes	mathematical	 analysis,	 modelling,	 simulation,	 experimentation,	 and	 other	 techniques	 to	 analyze	 technical	performance,	 system	 behavior,	 feasibility,	 affordability,	 critical	 quality	 characteristics,	 technical	 risks,	 life	 cycle	costs,	and	to	perform	sensitivity	analysis	of	the	potential	range	of	values	for	parameters	across	all	life	cycle	stages.	It	 is	 used	 for	 a	wide	 range	 of	 analytical	 needs	 concerning	 operational	 concepts,	 determination	 of	 requirement	values,	 resolution	 of	 requirements	 conflicts,	 assessment	 of	 alternative	 architectures	 or	 system	 elements,	 and	evaluation	of	engineering	strategies	(integration,	verification,	validation,	and	maintenance).	Formality	and	rigor	of	the	 analysis	will	 depend	 on	 the	 criticality	 of	 the	 information	 need	 or	work	 product	 supported,	 the	 amount	 of	information/data	available,	the	size	of	the	project,	and	the	schedule	for	the	results.	NOTE	 The	System	Analysis	process	can	be	employed	for	the	entire	software	system	or	any	element.	This	process	is	often	used	in	conjunction	with	the	Decision	Management	process.	
6.4.6.2 Outcomes As	a	result	of	the	successful	implementation	of	the	System	Analysis	process:a)	 System	analyzes	needed	are	identified.	b)	 System	analysis	assumptions	and	results	are	validated.	c)	 System	analysis	results	are	provided	for	decisions.	d)	 Any	enabling	systems	or	services	needed	for	system	analysis	are	available.	e)	 Traceability	of	the	system	analysis	results	is	established. 
 

6.4.6.3 Activities and tasks The	project	shall	implement	the	following	activities	and	tasks	in	accordance	with	applicable	organization	policies	and	procedures	with	respect	to	the	System	Analysis	process.	a) Define the system analysis strategy and prepare for system analysis.	 This	 activity	 consists	 of	 the	following	tasks:	1) Identify	the	problem	or	question	that	requires	analysis.	NOTE	 This	 includes	 technical,	 functional,	 and	 non‐functional	 objectives	 of	 the	 analysis.	 Non‐functional	 objectives	include	 critical	 quality	 characteristics,	 various	 properties,	 technology	 maturity,	 and	 technical	 risks.	 The	 problem	statement	 or	 question	 to	 be	 answered	 by	 the	 analysis	 is	 essential	 to	 establish	 the	 objectives	 of	 the	 analysis	 and	 the	expectations	and	utility	of	the	results.	2) Identify	the	stakeholders	of	the	analysis.	3) Define	the	scope,	objectives,	and	level	of	fidelity	of	the	analysis.	NOTE	 The	necessary	level	of	fidelity	(accuracy	or	precision)	is	a	factor	in	determining	the	appropriate	level	of	rigor.	

https://www.normsplash.com/ISO/162773964/ISO-IEC-IEEE-12207?src=spdf


ISO/IEC/IEEE 12207:2017(E) 

75	©	ISO/IEC	2017	–	All	rights	reserved	©	IEEE	2017	–	All	rights	reserved 

4) Select	the	methods	to	support	the	analysis.	NOTE	 The	 methods	 are	 chosen	 based	 on	 time,	 cost,	 fidelity,	 technical	 drivers,	 and	 criticality	 of	 analysis.	 Analysis	methods	have	a	wide	range	of	levels	of	rigor	and	include	expert	judgment,	worksheet	computations,	parametric	estimates	and	calculations,	historical	data	and	trend	analysis,	engineering	models,	simulation,	visualization,	and	prototyping.	Due	to	cost	and	schedule	constraints,	most	projects	typically	perform	system	analysis	only	for	critical	characteristics.	5) Identify	and	plan	for	the	necessary	enabling	systems	or	services	needed	to	support	the	analysis.	NOTE	 This	 task	 includes	 identification	of	 requirements	and	 interfaces	 for	 the	enabling	systems.	The	system	analysis	enabling	systems	include	the	tools,	relevant	models,	and	potential	data	repositories	needed	to	support	the	analysis.	The	methods	 chosen	 will	 be	 a	 major	 factor	 in	 determining	 what	 tools	 are	 appropriate	 to	 support	 the	 analysis.	 This	 also	includes	determining	the	availability	of	reusable	or	other	relevant	models	and	data,	or	resources.	6) Obtain	or	acquire	access	to	the	enabling	systems	or	services	to	be	used.	NOTE	 The	 Infrastructure	 Management	 process	 enables	 the	 provision	 of	 systems	 analysis	 services.	 The	 Validation	process	is	used	to	objectively	confirm	that	the	enabling	system	achieves	its	intended	use	for	its	enabling	functions.	7) Collect	the	data	and	inputs	needed	for	the	analysis.	b) Perform system analysis.	This	activity	consists	of	the	following	tasks:	1) Identify	and	validate	contexts	and	assumptions.	2) Apply	the	selected	analysis	methods	to	perform	the	required	analysis.	3) Review	the	analysis	results	for	quality	and	validity.	NOTE	 The	results	are	coordinated	with	associated	analyzes	that	have	been	previously	completed.	4) Establish	conclusions	and	recommendations.	NOTE	 The	appropriate	subject	matter	experts	and	stakeholders	are	identified	and	engaged	in	this	task.	5) Record	the	results	of	the	system	analysis,	c) Manage the system analysis.	This	activity	consists	of	the	following	tasks:	1) Maintain	traceability	of	the	analysis	results.	NOTE		 Through	 the	 life	 cycle,	 bidirectional	 traceability	 is	maintained	 between	 the	 analysis	 results	 and	 any	 software	system	 item	 for	which	 the	 analysis	 is	 supporting	 a	 decision	 or	 providing	 rationale	 (e.g.,	 system/software	 requirement	values,	architecture	alternatives).	This	is	often	facilitated	by	an	appropriate	data	repository.	2) Provide	key	artifacts	and	information	items	that	have	been	selected	for	baselines.	NOTE		 The	Configuration	Management	process	is	used	to	establish	and	maintain	configuration	items	and	baselines.	This	process	 identifies	candidates	for	the	baseline,	and	the	Information	Management	process	controls	the	 information	items.	For	this	process,	the	analysis	results	or	reports	are	typical	information	items	that	are	managed.	
6.4.7 Implementation process 

6.4.7.1 Purpose The	purpose	of	the	Implementation	process	is	to	realize	a	specified	system	element.	This	 process	 transforms	 requirements,	 architecture,	 and	 design,	 including	 interfaces,	 into	 actions	 that	 create	 a	system	element	according	to	the	practices	of	the	selected	implementation	technology,	using	appropriate	technical	specialties	or	disciplines.	This	process	 results	 in	a	 system	element	 that	 satisfies	 specified	 system	 requirements	(including	allocated	and	derived	requirements),	architecture,	and	design.	For	software	systems,	the	purpose	of	the	Implementation	process	is	to	realize	a	software	system	element.	

https://www.normsplash.com/ISO/162773964/ISO-IEC-IEEE-12207?src=spdf


ISO/IEC/IEEE 12207:2017(E) 

76	 ©	ISO/IEC	2017	–	All	rights	reserved	©	IEEE	2017	–	All	rights	reserved	

Software	 system	 elements	 can	 include	 hardware,	 software,	 and	 services.	 For	 software	 implementation,	 this	process	transforms	specified	designs,	behavior,	interfaces	and	implementation	constraints	into	actions	that	create	a	 software	 system	 element	 implemented	 as	 a	 software	 product	 or	 service,	 also	 known	 as	 a	 “software	 item”.	Software	implementation	results	in	a	software	element	that	satisfies	specified	requirements	through	verification	and	 stakeholder	 requirements	 through	 validation.	 Software	 implementation	 includes	 various	 combinations	 of	construction	 (coding	 of	 newly	 built	 software	 elements),	 acquisition	 of	 new	 software	 packages	 (e.g.,	 from	 open	source	or	a	commercial	or	organizational	source)	or	re‐use	of	existing	elements	(with	or	without	modification).	Software	implementation	commonly	involves	use	of	the	Agreement	processes	to	obtain	non‐developmental	items	(NDI),	 such	 as	 hardware	 and	 operating	 systems	 (the	 platform)	 or	 enabling	 systems	 and	 services.	 Software	implementation	 is	 usually	 performed	 concurrently	 with	 software	 integration.	 Implementation	 is	 typically	performed	along	with	all	of	the	Technical	Management	processes	and	many	of	the	Technical	processes,	especially:	a) The	Verification	process,	which	provides	objective	evidence	that	the	software	implementation	fulfills	its	specified	 requirements	 and	 identifies	 anomalies	 (errors,	 defects,	 faults)	 in	 implementation‐related	information	 items,	 (e.g.,	 system/software	 requirements,	 architecture,	 design,	 or	 other	 descriptions),	processes,	software	elements,	items,	units;	b) The	 Validation	 process,	 which	 confirms	 that	 the	 implementation	 fulfils	 requirements	 for	 a	 specific	intended	use	of	a	software	work	product.	
6.4.7.2 Outcomes As	a	result	of	the	successful	implementation	of	the	Implementation	process:a)	 Implementation	constraints	that	influence	the	requirements,	architecture,	or	design	are	identified.	b)	 A	system	element	is	realized.	c)	 A	system	element	is	packaged	or	stored.	d)	 Any	enabling	systems	or	services	needed	for	implementation	are	available.	e)	 Traceability	is	established. 
 

6.4.7.3 Activities and tasks The	project	shall	implement	the	following	activities	and	tasks	in	accordance	with	applicable	organization	policies	and	procedures	with	respect	to	the	Implementation	process.	a) Prepare for implementation.	This	activity	consists	of	the	following	tasks:	1) Define	an	implementation	strategy,	with	consideration	of	the	following:	i) development	 policies	 and	 standards,	 including	 standards	 that	 govern	 applicable	 safety,	 security,	privacy	 and	 environmental	 practices;	 programming	 or	 coding	 standards;	 unit	 test	 policies;	 and	language‐specific	standards	for	implementing	security	features;	ii) For	reused	or	adapted	software,	methods	to	determine	the	level,	source,	and	suitability	of	the	reused	system	elements	and	security	of	the	supply	chain;	iii) procedures	and	methods	for	software	development	(construction)	and	development	of	unit	tests;	and	the	use	of	peer	reviews,	unit	tests,	and	walkthroughs	during	implementation;	iv) use	of	CM	control	during	software	construction;	v) change	management	considerations	for	manual	processes;	vi) implementation	 priorities	 to	 support	 data	 and	 software	 migration	 and	 transition,	 along	 with	retirement	of	legacy	systems;	

https://www.normsplash.com/ISO/162773964/ISO-IEC-IEEE-12207?src=spdf


ISO/IEC/IEEE 12207:2017(E) 

77	©	ISO/IEC	2017	–	All	rights	reserved	©	IEEE	2017	–	All	rights	reserved 

vii) creation	 of	 manual	 or	 automated	 test	 procedures	 to	 verify	 that	 a	 software	 unit	 meets	 its	requirements	before	creation	of	the	software	unit	(test‐driven	development);	and	viii) comprehensive	 or	 specialized	 life	 cycle	 development	 and	 support	 environments	 for	 realizing	 and	managing	 requirements,	models	 and	prototypes,	deliverable	 system	or	 software	elements,	 and	 test	specifications	and	test	cases.	NOTE		 The	implementation	strategy	is	commonly	recorded	in	a	project’s	SDP	or	SEMP,	or	sometimes	in	a	PMP.	2) Identify	 constraints	 from	 the	 implementation	 strategy	 and	 implementation	 technology	 on	 the	system/software	 requirements,	 architecture	 characteristics,	 design	 characteristics,	 or	 implementation	techniques.	NOTE	1	 	 Constraints	 include	 current	 or	 anticipated	 limitations	 of	 the	 chosen	 implementation	 technology	 (e.g.,	 for	software,	 the	 operating	 system,	 database	 management	 system,	 web	 services),	 acquirer	 furnished	materials	 or	 system	elements	for	adaptation,	and	limitations	resulting	from	the	use	of	required	implementation‐enabling	systems.	NOTE	2	 	 The	 implementation	 strategy	 for	 software	 typically	 identifies	 and	 allocates	 ‘implement‐to’	 criteria,	 e.g.,	software	architecture	and	design	characteristics,	 system/software	requirements	 including	software	assurance,	usability	considerations,	 configuration	 management,	 traceability,	 or	 other	 conditions	 to	 be	 satisfied.	 These	 criteria	 can	 clarify	appropriate	unit	aggregation	levels,	specifications,	and	constraints.	3) Identify	 and	plan	 for	 the	 necessary	 and	distinct	 software	 environments,	 including	 enabling	 systems	 or	services	needed	to	support	development	and	testing.	NOTE	 Implementation	 of	 software	 commonly	 uses	 distinct	 environments	 that	 are	 separated	 under	 configuration	control	from	the	operational	(production)	environment.	Common	Implementation	process,	enabling	systems,	and	services	include	 comprehensive	 or	 specialized	 life	 cycle	 development	 and	 support	 environments	 for	 realizing	 and	 managing	requirements,	 models	 and	 prototypes,	 deliverable	 elements,	 and	 test	 environments,	 specifications	 and	 test	 cases;	simulators	for	external	systems,	training	systems;	and	content	management	systems	for	user	documentation.	4) Obtain	or	acquire	access	to	the	software	environments	and	other	enabling	systems	or	services.	NOTE	 The	Validation	process	is	used	to	objectively	confirm	that	the	integration	enabling	system	achieves	its	intended	use	for	its	enabling	functions.	b) Perform implementation. This	activity	consists	of	the	following	tasks:	NOTE		 Throughout	 the	 Implementation	 process	 the	 Verification	 process	 is	 used	 to	 objectively	 confirm	 the	 system	elements	conform	to	requirements.	The	Validation	process	is	used	to	objectively	confirm	the	element	is	suitable	to	be	used	in	its	intended	operational	environment	according	to	stakeholder	requirements.	1) Realize	or	adapt	 software	elements,	 according	 to	 the	strategy,	 constraints,	and	defined	 implementation	procedures.	NOTE	1	 	 Software	 elements	 are	 acquired,	 identified	 for	 reuse	 from	organizational	 assets,	 or	developed	 (constructed).	Software	 elements	 that	 are	 acquired	 can	 range	 from	 a	 simple	 product	 purchase	 in	 accordance	with	 organizational	 or	project	purchasing	rules	to	a	complex	acquisition	of	a	software	system	that	involves	the	Acquisition	and	Supply	processes.	Adaptation	 includes	configuration	of	 software	elements	 that	are	 reused	or	modified.	Construction	can	 involve	software	coding,	adaptive	reuse	and	integration	of	existing	units,	refactoring,	database	development,	and	construction	of	manual	or	automated	test	procedures	for	each	unit.	NOTE	2	 	 For	software	elements	that	are	developed,	at	the	lowest	level	of	implementation	executable	software	units	are	constructed	 (often	 with	 associated	 data	 structures,	 application	 programming	 interfaces,	 service	 descriptions,	 user	documentation,	test	cases,	or	other	elements),	controlled,	made	available	to	authorized	roles,	and	stored	according	to	the	CM	procedures	for	development	artifacts.	NOTE	3	 	 The	SWEBOK, Guide to the Software Engineering Body of Knowledge	 provides	 detailed	 discussion	 on	 Software	Construction.	 This	 knowledge	 area	 addresses	 fundamentals,	management,	measurement,	 practical	 considerations	 (e.g.,	construction	design,	languages,	testing,	reuse	and	integration),	construction	technologies	(e.g.,	object	oriented,	error	and	exception	handling,	executable	models,	distributed	software),	and	tools	and	environments.	2) Realize	or	adapt	hardware	elements	of	software	systems.	

https://www.normsplash.com/ISO/162773964/ISO-IEC-IEEE-12207?src=spdf


ISO/IEC/IEEE 12207:2017(E) 

78	 ©	ISO/IEC	2017	–	All	rights	reserved	©	IEEE	2017	–	All	rights	reserved	

NOTE	 Hardware	 elements	 are	 acquired	 or	 fabricated	 using	 applicable	 techniques	 relevant	 to	 the	 physical	implementation	 technology	 and	materials	 selected.	As	 appropriate,	 hardware	 elements	 are	 verified	 for	 conformance	 to	specified	system	requirements	and	critical	quality	characteristics.	In	the	case	of	repeated	system	element	implementation	(e.g.,	 mass	 production,	 replacement	 system	 elements)	 the	 implementation	 procedures	 and	 fabrication	 processes	 are	defined	and	can	be	automated	to	achieve	consistent	and	repeatable	producibility.	Some	common	hardware	elements	 in	software	 systems	 include	 integrations	 of	 acquired	 COTS	 systems,	 special	 modifications,	 e.g.,	 for	 test	 or	 operational	environments,	and	hardware	controls	with	embedded	software.	3) Realize	or	adapt	service	elements	of	software	systems.	NOTE		 Service	 elements	 include	 a	 set	 of	 services	 to	 be	 provided.	 ISO/IEC	 20000	 (IEEE	 Std	 20000)	 applies	 to	management	of	 system	elements	 realized	 in	 services,	 including	 strategy,	design,	 and	 transition.	As	appropriate,	 service	elements	are	verified	for	conformance	to	the	system	requirements	and	service	criteria.	For	example,	operational	resource	elements	are	verified	for	conformance	to	the	system	requirements	and	operational	concept.	Service	elements	can	include	network	 communications,	 training,	 software	 packaging	 and	 distribution	 services,	 software	 customization	 services	 for	customer‐specific	needs,	operational	and	security	monitoring,	and	user	assistance.	4) Evaluate	software	unit	and	affiliated	data	or	other	information	according	to	the	implementation	strategy	and	criteria.	NOTE	1	 	 Criteria	for	evaluation	commonly	include	satisfaction	of	unit	requirements	and	test	criteria,	unit	test	coverage,	traceability	 requirements,	 consistency	 with	 software	 element	 requirements	 or	 design,	 internal	 unit	 requirement	consistency,	 and	 feasibility	 for	 further	 process	 activity,	 e.g.,	 integration,	 verification,	 validation,	 operations	 and	maintenance.	NOTE	2	 	 Use	the	Manage results of implementation	activity	to	record	construction	and	address	anomalies.	5) Package	and	store	the	software	system	element.	NOTE	 Contain	 the	 software	 system	 element	 in	 order	 to	 achieve	 continuance	 of	 its	 characteristics.	 Conveyance	 and	storage,	 and	 their	 durations,	 can	 influence	 the	 specified	 containment.	 For	 software,	 a	master	 copy	of	 the	 implemented	software	(electronic	or	on	physical	media)	is	stored	in	a	controlled	location	and	made	available	to	authorized	roles	(e.g.,	for	 use	 in	 the	 Integration	 and	 Transition	 processes).	 Configuration	 and	 product	 information	 is	 captured	 by	 the	Configuration	Management	and	Information	Management	processes	when	the	element	is	stored.	6) Record	objective	evidence	that	the	software	system	element	meets	requirements.	NOTE	 Evidence	 is	 provided	 in	 accordance	 with	 supply	 agreements,	 legislation	 and	 organization	 policy.	 Evidence	includes	element	modifications	made	due	to	processing	changes	or	non‐conformances	found	during	the	Verification	and	Validation	processes.	The	objective	evidence	 is	part	of	 the	element’s	as‐implemented	configuration	baseline	established	through	 the	 Configuration	 Management	 process	 and	 includes	 the	 results	 of	 unit	 testing,	 analysis,	 inspections,	 walk‐through	events,	demonstrations,	product	or	technical	reviews,	or	other	verification	exercises.	c) Manage results of implementation. This	activity	consists	of	the	following	tasks:	1) Record	implementation	results	and	anomalies	encountered.	NOTE	 This	includes	anomalies	due	to	the	implementation	strategy,	the	implementation	enabling	systems,	or	incorrect	software	system	definition.	The	Project	Assessment	and	Control	and	Quality	Assurance	processes	are	used	to	analyze	the	data	to	identify	the	root	cause,	enable	corrective	or	improvement	actions,	and	to	record	lessons	learned.	2) Maintain	traceability	of	the	implemented	software	system	elements.	NOTE	1	 	 To	 support	 traceability	 throughout	 the	 life	 cycle	 during	 operations	 and	 maintenance,	 sources	 of	 software	licenses	 and	 other	 system	 assets	 in	 the	 supply	 chain	 are	 recorded.	 The	 information	 management	 and	 configuration	management	processes	 are	used	 to	maintain	 license	and	maintenance	 support	 terms	 for	a	 software	application	and	 its	required	infrastructure	(host	system).	The	ISO/IEC	19770	standards	provide	requirements	for	an	IT	asset	management	system.	NOTE	2	 	 Bidirectional	 traceability	 is	 maintained	 between	 the	 implemented	 elements	 and	 the	 software	 system	architecture;	 design,	 and	 related	 requirements,	 including	 interface	 requirements	 and	definitions	 that	 are	necessary	 for	implementation;	and	validation	and	verification	plans,	procedures,	and	results.	3) Provide	key	artifacts	and	information	items	that	have	been	selected	for	baselines.	

https://www.normsplash.com/ISO/162773964/ISO-IEC-IEEE-12207?src=spdf


ISO/IEC/IEEE 12207:2017(E) 

79	©	ISO/IEC	2017	–	All	rights	reserved	©	IEEE	2017	–	All	rights	reserved 

NOTE	 The	Configuration	Management	process	is	used	to	establish	and	maintain	configuration	items	and	baselines.	This	process	 identifies	candidates	for	the	baseline,	and	the	Information	Management	process	controls	the	 information	items.	For	 this	 process,	 the	 software	 system	 elements	 (e.g.,	 source	 code),	 software	 packages,	 and	 unit	 test	 results	 are	 typical	artifacts	that	are	baselined.	
6.4.8 Integration process 

6.4.8.1 Purpose The	purpose	of	the	Integration	process	is	to	synthesize	a	set	of	system	elements	into	a	realized	system	(product	or	service)	that	satisfies	system/software	requirements,	architecture,	and	design.	This	 process	 assembles	 the	 implemented	 system	 elements.	 Interfaces	 are	 identified	 and	 activated	 to	 enable	interoperation	of	the	system	elements	as	intended.	This	process	integrates	the	enabling	systems	with	the	system‐of‐interest	to	facilitate	interoperation.	Software	system	integration	iteratively	combines	implemented	software	system	elements	to	form	complete	or	partial	system	configurations	in	order	to	build	a	product	or	service.	Software	integration	is	typically	performed	daily	or	continuously	during	development	 and	 maintenance	 stages,	 using	 automated	 tools.	 Continuous	 integration	 involves	 frequent	 inclusion	 or	replacement	and	archiving	of	items	in	software	libraries	under	CM	control.	NOTE		 Interfaces	 are	 defined	 by	 the	 Architecture	 Definition	 and	 Design	 Definition	 processes.	 The	 Integration	 process	coordinates	with	these	other	processes	to	check	that	 the	 interface	definitions,	as	 implemented	and	 integrated,	are	adequate	and	that	they	take	into	account	the	integration	needs.	
6.4.8.2 Outcomes As	a	result	of	the	successful	implementation	of	the	Integration	process:a) Integration	constraints	that	influence	system	requirements,	architecture,	or	design,	 including	interfaces,	are	identified.		b) Approach	and	checkpoints	for	the	correct	operation	of	the	assembled	interfaces	and	system	functions	are	defined.		c) Any	enabling	systems	or	services	needed	for	integration	are	available.		d) A	system	composed	of	implemented	system	elements	is	integrated.		e) The	interfaces	between	the	implemented	system	elements	that	compose	the	system	are	checked.		f) The	interfaces	between	the	system	and	the	external	environment	are	checked.		g) Integration	results	and	anomalies	are	identified. 	h) Traceability	of	the	integrated	system	elements	is	established. 
 

6.4.8.3 Activities and tasks The	project	shall	implement	the	following	activities	and	tasks	in	accordance	with	applicable	organization	policies	and	procedures	with	respect	to	the	Integration	process.	a) Prepare for integration. This	activity	consists	of	the	following	tasks:	1) Define	the	integration	strategy.	NOTE	1	 	 Integration	 builds	 sequences	 of	 progressively	 more	 complete	 software	 system	 element	 or	 software	 item	configurations.	It	is	dependent	on	applicable	software	system	element	availability	and	is	consistent	with	a	fault	isolation	and	 diagnosis	 strategy.	 Successive	 applications	 of	 the	 Integration	 process	 and	 the	 Verification	 process,	 and	 when	appropriate	 the	 Validation	 process,	 are	 repeated	 for	 elements	 in	 the	 system	 structure	 until	 the	 system‐of‐interest	 has	been	 realized.	 Simulators	 or	 prototypes	 are	 typically	 utilized	 for	 system	 elements	 that	 are	 not	 yet	 implemented,	 e.g.,	

https://www.normsplash.com/ISO/162773964/ISO-IEC-IEEE-12207?src=spdf


ISO/IEC/IEEE 12207:2017(E) 

80	 ©	ISO/IEC	2017	–	All	rights	reserved	©	IEEE	2017	–	All	rights	reserved	

receiving	data	from	interfacing	systems.	Integrating	the	implemented	software	system	elements	is	based	on	the	priorities	of	the	related	requirements	and	architecture	definition,	typically	focusing	on	the	interfaces,	while	minimizing	integration	time,	 cost,	 and	 risks.	 Software	 system	 integration	 commonly	 maintains	 version	 control	 through	 the	 Configuration	Management	process	for	selection	of	configuration	items	to	be	integrated.	NOTE	2	 	 For	 software	 integration,	 the	 integration	 strategy	 typically	 is	 consistent	with	 a	 regression	 strategy	which	 is	applied	for	re‐verifying	software	elements	when	related	software	units	(and	potentially	associated	requirements,	design	and	user	documentation)	are	changed.	NOTE	3	 	 Defining	a	strategy	for	software	unit	and	element	integration	commonly	accompanies	defining	the	strategy	for	other	processes	that	occur	concurrently,	such	as:	i) The	 Implementation	 process	 to	 help	 ensure	 timely	 coordination	 of	 Implementation	 and	 Integration	 process	tasks	and	enabling	systems,	e.g.,	combined	software	development	and	test	environments	to	support	automated	or	continuous	implementation	and	integration	of	software	units	and	elements.	ii) The	 Verification	 process	 to	 provide	 objective	 evidence	 that	 the	 integrated	 software	 fulfils	 its	 specified	requirements	and	 to	 identify	anomalies	 (errors,	defects,	 faults)	 in	 integration‐related	 information	 items,	 (e.g.,	system/software	requirements,	architecture,	design,	test,	or	other	descriptions),	processes,	software	elements,	items,	units.	iii) The	Validation	 process	 to	 confirm	 that	 a	work	 product	 fulfils	 requirements	 for	 a	 specific	 intended	 use	 of	 an	integrated	software	function.	iv) The	Quality	Assurance	process	to	support	integration	process	and	work	product	audits	and	inspections	and	to	address	problem,	non‐conformance,	or	incident	reporting	and	handling.	NOTE	4	 		 The	integration	strategy	is	commonly	recorded	in	a	plan,	e.g.,	an	integration	plan,	or	a	project’s	SDP	or	SEMP.	2) Identify	and	define	criteria	for	integration	and	points	at	which	the	correct	operation	and	integrity	of	the	interfaces	and	the	selected	software	system	functions	will	be	verified.	NOTE	1	 	 Detailed	verification	of	the	interfaces	is	performed	using	the	Verification	process.	Software	integration	typically	involves	 combining	 software	 elements,	 resulting	 in	 a	 set	 of	 integrated	 software	 elements,	 that	 is	 consistent	 with	 the	software	design,	and	that	satisfies	 the	 functional	and	non‐functional	system/software	requirements	on	an	equivalent	of	the	operational	environment.	NOTE	2	 	 For	projects	 involving	multiple	suppliers	or	development	teams,	the	availability	of	software	system	elements	for	integration	is	typically	part	of	the	project	schedule	with	milestones	under	the	Project	Assessment	and	Control	process.	Integration	 proceeds	 as	 the	 software	 is	 verified	 in	 its	 functionality,	 performance,	 and	 suitability	 for	 site‐specific	 or	platform‐specific	environments.	At	major	integration	points,	e.g.,	completion	of	a	stage,	element,	or	version,	check	points	for	reviews	and	validation	with	stakeholders	are	typically	held.	The	frequency	of	these	reviews	is	related	to	the	selected	life	cycle	model	and	development	method.	3) Identify	and	plan	for	the	necessary	enabling	systems	or	services	needed	to	support	integration.	NOTE	 This	 includes	 identification	 of	 requirements	 and	 interfaces	 for	 the	 enabling	 systems.	 Enabling	 systems	 for	integration	 commonly	 include	 integration	 facilities,	 specialized	 equipment,	 training	 systems,	 discrepancy	 reporting	systems,	 simulators,	 measurement	 devices,	 and	 environmental	 security.	 For	 software,	 this	 can	 involve	 regression	 test	suites	and	CM	systems	for	the	integrated	testing	of	software	systems,	incident	and	problem	reporting	systems,	simulators	representing	 external	 systems	 or	 undeveloped	 elements,	 and	 software	 library	 management	 systems	 for	 development	operations.	 Changes	 or	 specializations	 needed	 for	 the	 enabling	 systems	 to	 support	 the	 integration	 tasks	 need	 to	 be	identified	and	defined.	Typically,	the	enabling	systems	or	services	used	for	integration	during	development	stages	can	also	help	support	system	element	integration	as	the	software	system	and	enabling	environments	evolve	to	operational	status.	This	 “DevOps”	 approach	 supports	 iterative	 software	 system	 implementation,	 integration,	 verification,	 transition,	validation,	operation	and	maintenance	processes.	4) Obtain	or	acquire	access	to	the	enabling	systems	or	services	to	be	used	to	support	integration.	NOTE		 The	Validation	process	is	used	to	objectively	confirm	that	an	integration	enabling	system	achieves	its	intended	use	for	its	enabling	functions.	5) Identify	constraints	for	integration	to	be	incorporated	in	the	system/software	requirements,	architecture	or	design.	

https://www.normsplash.com/ISO/162773964/ISO-IEC-IEEE-12207?src=spdf


ISO/IEC/IEEE 12207:2017(E) 

81	©	ISO/IEC	2017	–	All	rights	reserved	©	IEEE	2017	–	All	rights	reserved 

NOTE	 This	 includes	 requirements	 such	 as	 accessibility,	 supply	 chain	 security,	 safety	 for	 integrators,	 required	interconnections	for	sets	of	implemented	software	system	elements	and	for	enablers,	and	interface	constraints.	b) Perform integration.	 Successively	 integrate	 software	 system	 element	 configurations	 until	 the	 complete	system	is	synthesized.	This	activity	consists	of	the	following	tasks:	1) Obtain	implemented	software	system	elements	in	accordance	with	agreed	schedules.	NOTE	 The	 implemented	software	system	elements	are	provided	from	the	developers	or	received	 from	suppliers,	 the	acquirer,	or	other	resources	and	typically	placed	under	CM	control.	The	elements	are	handled	in	accordance	with	relevant	health,	safety,	security	and	privacy	considerations.	2) Integrate	the	implemented	elements.	NOTE	1	 	 This	task	is	performed	to	achieve	software	system	element	configuration	(complete	or	partial)	connecting	the	implemented	 elements	 as	 prescribed	 in	 the	 integration	 strategy,	 using	 the	 defined	 procedures,	 interface	 control	descriptions,	and	the	related	integration	enabling	systems.	NOTE	2	 	 In	terms	of	software,	integrating	the	implemented	elements	can	involve	linking	together	pieces	of	object	code	or	simply	bringing	together	the	implemented	elements	that	are	part	of	the	software	configuration	in	a	methodical	piece	by	piece	 approach.	 Software	 elements	 are	 typically	 compiled	 into	 a	 “build”	 so	 that	 branched	 units	 are	 properly	 linked	 or	merged	 in	 the	 assembled	 element.	 Firmware	 elements	 are	 fabricated,	 often	 as	 prototypes,	 and	 installed	 in	 hardware	elements.	If	software	functions	are	not	yet	available	for	integration,	emulated	functionality	(stubs	or	scaffolding)	can	be	used	 to	 temporarily	 support	 integration	 of	 software	 elements	 or	 represent	 input	 from	 external	 interfaces.	 Successful	aggregations	result	 in	an	integrated	software	element,	 that	 is	stored	and	available	for	further	processing,	 i.e.,	additional	software	system	element	integration,	verification,	or	validation.	NOTE	3	 	 Anti‐counterfeit,	 anti‐tamper,	 system	 and	 software	 assurance	 and	 interoperability	 concerns	 can	 arise	 when	performing	 integration	 and	 identifying	 and	 defining	 checkpoints.	 Integration	 and	 Verification	 processes	 often	 use	fictitious	 data	 for	 security	 or	 privacy	 considerations.	 ISO/IEC/IEEE	 15026	 and	 the	 ISO/IEC	 27000	 series	 include	information	on	assurance,	integrity,	and	security	considerations	affecting	integration.	3) Check	that	the	integrated	software	interfaces	or	functions	run	from	initiation	to	an	expected	termination	within	an	expected	range	of	data	values.	NOTE	 As	part	of	the	acceptance	of	the	implemented	software	system	elements,	selected	elements	are	checked	to	help	ensure	 they	meet	 acceptance	 criteria	 as	 specified	 in	 the	 integration	 strategy	 and	 applicable	 agreements.	 Checking	 can	include	conformance	to	the	agreed	configuration,	compatibility	of	interfaces,	and	the	presence	of	mandatory	information	items.	The	Project	Assessment	and	Control	process	can	be	used	in	accordance	with	the	integration	strategy	to	plan	and	conduct	 technical	 reviews	 of	 the	 integrated	 software	 system	 elements,	 e.g.,	 a	 test	 readiness	 review	 to	 help	 ensure	 the	integrated	element	or	system	with	its	affiliated	data	and	information	items	is	ready	for	qualification	testing.	c) Manage results of integration.	This	activity	consists	of	the	following	tasks:	1) Record	integration	results	and	anomalies	encountered.	NOTE	 This	 includes	 anomalies	 due	 to	 the	 integration	 strategy,	 the	 integration	 enabling	 systems,	 execution	 of	 the	integration	or	incorrect	system	or	element	definition.	Where	inconsistencies	exist	at	the	interface	between	the	system,	its	specified	operational	environment	and	systems	that	enable	the	utilization	stage,	the	deviations	lead	to	corrective	actions.	Anomaly	resolution	typically	involves	the	Technical	Processes,	often	repetitive	application	of	the	Implementation	process.	The	Quality	Assurance	and	Project	Assessment	and	Control	process	are	used	to	analyze	the	data	to	identify	the	root	cause,	enable	corrective	or	improvement	actions,	and	to	record	lessons	learned.	2) Maintain	traceability	of	the	integrated	software	system	elements.	NOTE	 Bidirectional	 traceability	 is	 maintained	 between	 the	 integrated	 system	 elements	 and	 the	 software	 system	architecture,	design,	and	system	or	element	 requirements,	 such	as	use	 cases,	and	 including	 interface	requirements	and	definitions	 that	 are	 necessary	 for	 integration.	 Integrated	 software	 elements	 and	 their	 components	 are	 identified	 by	version.	Versions	of	integrated	software	elements	are	commonly	traceable	to	implemented	units,	test	procedures,	and	test	cases.	3) Provide	key	artifacts	and	information	items	that	have	been	selected	for	baselines.	NOTE	 The	Configuration	Management	process	is	used	to	establish	and	maintain	configuration	items	and	baselines.	The	Integration	 process	 identifies	 candidates	 for	 the	 baseline,	 and	 the	 Information	 Management	 process	 controls	 the	

https://www.normsplash.com/ISO/162773964/ISO-IEC-IEEE-12207?src=spdf

	Foreword
	Introduction
	1 Scope
	1.1 Overview
	1.2 Purpose
	1.3 Field of application
	1.4 Limitations

	2 Normative references
	3 Terms, definitions, and abbreviated terms
	3.1 Terms and definitions


