
Other Important Batch Control Items 79 

A mode change in one procedural element or equipment entity may force a 
change of mode in others. If an operator changes a unit procedure mode from 
automatic to semiautomatic, it may be wise for him or her to propagate all 
dependent operations and phases to semiautomatic mode. The S88 standard 
recognizes that propagation can move from a higher-level entity to a lower-level 
entity or vice versa, but it does not specify any propagation rules. Different batch 
management packages may have rules or may provide options for the end user. 

STATES AND COMMANDS ASSOCIATED 

WITH BATCH CONTROL 

Procedural elements and equipment entities may have states. So can people: 
states of mind, a state of exhaustion, a state of undress. In regard to S88, the state 
is supposed to completely specify the current condition of a procedure element or 
equipment entity. Commands are one method for moving a procedural element or 
equipment entity from one state to another. 

S88 suggests a common set of states and commands for procedural elements. 
Some committee members might argue that saying the standard suggests states 
and commands is too strong a statement; they’d prefer to say S88 ”uses example 
states and commands.’’ Regardless, the standard does not require any particular 
set of states and commands. However, keep in mind that the S88 committee 
members are pretty smart cookies. The example procedural states and commands 
they chose probably will work in more than 95 percent of all the batching systems 
used today. OpenBatch, VisualBatch, RSBatch, and Total Plant Batch all use the 
states and commands included in the standard. Table 8.3 is the state transition 
matrix for the procedural element states and commands suggested by the 
standard. 

Table 8-3. State Transition Matrix for States and Commands Suggested by S88 

https://www.normsplash.com/ISA/172992692/Applying-S88-Batch-Control-from-a-Users-Perspective?src=spdf


80 Applying S88 

Figure 8.1 shows a simplified state transition diagram for the states and 
commands as suggested by S88. What it doesn't show are all the commands from 
all the states. The diagram really only focuses on the Idle, Running, and Complete 
states. For example, if an operator issues a HOLD command, the batch will stop 
executing Running logic, transition to the Holding state, and begin executing 
Holding logic. According to Table 8.3, once the batch is in the Holding state, an 
operator can still issue STOP or ABORT commands. To keep the diagram from 
getting too cluttered, those commands from the Holding state aren't shown in 
Figure 8.1. (The same commands would also need to be shown from the Held and 
Restarting states. In addition, other lines need to be shown from the Pausing, 
Paused, Stopping, and Stopped states.) 

Figure 8.1 State Transition Diagram for States and Commands Suggested by S88 

H 

K EST A K'I' 

Complete Hcld -7 )Idi ng 

A hc) rt i ng 

RESET 
Aborted 

Slopping 

ii 
stopped 0 

https://www.normsplash.com/ISA/172992692/Applying-S88-Batch-Control-from-a-Users-Perspective?src=spdf


Other Important Batch Control Items 81 

Table 8.4 describes each of the states. Table 8.5 describes each of the commands. 

Table 8-4. Procedural States Suggested by S88 

ldle 

Running 

Complete 

Holding 

Held 

Restarting 

Pausing 

Paused 

Stopping 

Stopped 

Aborting 

Aborted 

The procedural element is waiting for a START command that will cause a 

transition to the Running state. 

Normal operation. 

Normal operation has run to a normal completion. The procedural element is 

now waiting for a RESET command that will cause a transition to the ldle state. 

The procedural element has received a HOLD command and is executing its 

separate Holding logic to put the procedural element into a known condition. 

Once the Holding logic completes, the procedural element transitions 

automatically to the Held state. If no special sequencing is required to place the 

procedural element into a known condition, the procedural element transitions 

immediately to the Held state. 

The procedural element has completed its Holding logic and has been placed 

into a known or planned condition. The procedural element is now waiting for a 

command to proceed. This state is usually for longer-term batching interruptions. 

The procedural element has received a RESTART command while in the Held 

state and is executing its Restarting logic in order to return to the Running state. 

If no restarting sequencing is required, then the procedural element transitions 

immediately to the Running state. 

The procedural element has received a PAUSE command. This will cause the 

procedural element to stop at the next defined safe or stable location in its 

Running logic. Once the defined safe or stable location is reached, the state 

automatically transitions to Paused. 

State reached once the procedural element has reached the next defined safe or 

stable location after a PAUSE command. A RESUME command causes a 

transition to the Running state, resuming normal operation immediately following 

the defined safe or stable location. This state is usually for shorter-term batching 

interruptions. 

The procedural element has received a STOP command and is executing its 

Stopping logic, which sequences a controlled, normal stop. If no stopping 

sequencing is required, then the procedural element transitions immediately to 

the Stopped state. 

The procedural element has completed its Stopping logic and is waiting for a 

RESET command to transition to the ldle state. 

The procedural element has received an ABORT command and is executing its 

Aborting logic, which sequences a quicker, but not necessarily controlled, 

abnormal stop. If no aborting sequencing is required, then the procedural 

element transitions immediately to the Aborted state. 

The procedural element has completed its Aborting logic and is waiting for a 

RESET command to transition to the Idle state. 

https://www.normsplash.com/ISA/172992692/Applying-S88-Batch-Control-from-a-Users-Perspective?src=spdf


82 Applying S88 

Table 8-5. Procedural Commands Suggested by S88 

Start 

Hold 

Restart 

Pause 

Resume 

stop 

Abort 

Reset 

Orders the procedural element to execute its normal Running logic. Only valid 

while the procedural element is in the ldle state. 

Orders the procedural element to execute its Holding logic. Only valid while the 

procedural element is in the Running, Pausing, Paused, or Restarting states. 

Orders the procedural element to execute its Restarting logic to safely return to 

the Running state. Only valid while the procedural element is in the Heldstate. 

Orders the procedural element to pause at the next programmed pause 

transition within its normal Running logic and await a RESUME command before 

proceeding. Only valid in the Running state. 

Orders the procedural element to resume execution in its normal Running logic 

after it has paused at a programmed transition as a result of either a PAUSE 

command or a Semiautomatic mode. Only valid in the Paused state. 

Orders the procedural element to execute its Stopping logic. Only valid while the 

procedural element is in the Running, Pausing, Paused, Holding, Held, or 

Restarting states. 

Orders the procedural element to execute its Aborting logic. Valid while the 

procedural element is in every state except Idle, Complete, Aborting, and 

Aborted. 

Orders the procedural element to transition to the Idle state. Only valid while the 

procedural element is in the Complete, Stopped, and Aborted states. 

Remember that many batch control packages make the link between recipe 
procedures and equipment control at the phase level. The ”-ing” states (Running, 
Holding, Restauting, Stopping, and Abouting) generally are controlled by separate 
blocks of code in a phase. For example, in a PLC each phase may be contained 
within a single file but have separate sections of ladder logic in that file for 
controlling running, holding, restarting, stopping, and aborting. We’ll talk more 
about this in Chapters 10 and 11. 

Notice that according to S88 there is a big difference between Holding and Pausing. 
When an operator (or procedural element) issues a HOLD command, a separate 
section of code begins executing (the Holding logic). When someone or something 
issues a PAUSE command, the Running logic simply pauses at the next 
appropriate location. When a RESTART command is issued after the batch enters 
the Hold state, still another section of code (Restauting logic) begins executing. 
When an operator issues a RESUME command after the batch enters the Paused 
state, the Running logic simply starts again at the location it paused at. You can do 
really neat (and really important) stuff with Holding and Restarting logic. We’ll get 
into that in Chapters 11 and 12. 

Like modes, procedural elements and equipment entities may change state when 
a command is given by an operator or one is generated in another procedural 
element. A state change can only occur when defined, required conditions for the 
change are met. Probably the most common way to change states is with an 
operator command. 

https://www.normsplash.com/ISA/172992692/Applying-S88-Batch-Control-from-a-Users-Perspective?src=spdf


Other Important Batch Control Items 83 

Let’s use a pumping control module as an example of an equipment entity 
changing the state. A couple of valves, a pump, and a flowmeter make up this 
control module. Let’s say a phase issues a command to start charging an 
ingredient. A valve or two may open, the pump should start, and the flowmeter 
should soon start registering flow. If the flowmeter does not register flow within a 
given amount of time (maybe the pump motor tripped, a valve did not open, or a 
tank was empty), a failure flag will be set and a HOLD command automatically 
issued to the phase. 

Also, like modes, a state change in one procedural element or equipment entity 
may force a change in state in others. If an operator issues a PAUSE command to a 
procedure, it may be wise for him or her to transition all dependent unit 
procedures, operations, and phases to the Pausing state. Likewise, in our flow 
failure example, a HOLD command sent to one phase might need to propagate 
up to the procedure level and then back down to all dependent procedural 
elements. Sometimes this is for the convenience of the operators so a problem can 
be fixed. Sometimes this is absolutely necessary for safety considerations: many 
processes require that ingredients charge simultaneously or at a proportional rate 
to each other to prevent a dangerous (or sometimes explosive) condition. Many of 
the batch management packages provide you with options regarding how state 
propagation should occur. 

Looking back at Table 8.3, you can see the inherent priorities of the commands 
suggested by the S88 standard. The ABORT command has the highest priority 
because it can be issued from any active state (i.e., not Idle or Complete) except for 
the Aborting or Aborted states. Next highest in priority is STOP, then HOLD. 
Among the others, RUN, RESTART, PAUSE, and RESUME all have the same sort 
of priority because each can only be issued from one state. 

States for equipment entities may be very different than states for procedural 
elements. For example, the states for a pump could include on, of, percent on (or 
speed),failed, and ramping. The states for a valve could include open, closed, percent 
open, failed, and traveling. For some reason, the standard committee decided not to 
suggest a formal example set of equipment entity states. Maybe they were tired 
from a long debate on the procedural states. 

EXCEPTION HANDLING 

Wouldn’t it be nice if all batches ran perfectly from start to finish? Well, we have 
some bad news to break to you: batches just don’t behave as we would hope 
every time. An event that occurs outside the normal or desired behavior of 
making a batch is commonly called an exception. Handling these exceptions is an 
essential function of batch manufacturing and typically accounts for a large 
portion of the control definition. Don’t be surprised if more than half of your 
design work and program code deals with exceptions. 

https://www.normsplash.com/ISA/172992692/Applying-S88-Batch-Control-from-a-Users-Perspective?src=spdf


84 Applying S88 

Exceptions don’t have to be related to failures like a tripped pump, stuck valve, or 
lack of steam. A tank running out of an ingredient in the middle of a batch could 
be considered an exception. Exception handling can occur in procedural, basic, or 
coordination control. 

A response to an exception may cause a change in the mode or state of procedural 
elements or equipment entities. Using our flow failure example from the last 
section, a charge phase will detect an exception if the flowmeter doesn’t register 
any flow. This causes a HOLD command to be issued to the phase, causing in turn 
a change in state from Running to Holding and eventually to Held. 

Exception handling can be done in procedures or in equipment control. Procedure 
exception handling should be kept in the recipe because equipment control 
generally does not have any understanding of the procedures coordinating it. For 
example, if an operation has enough information to know that phase B and not 
phase A should start, handle that in the procedure, not in the phases. 

You can also perform exception handling even before a recipe starts. Perhaps a 
recipe needs cream as an ingredient, but no cream tanks are available when the 
recipe starts. You can implement the exception handling in PLC or DCS phase 
logic. When the exception occurs, the equipment phase can issue a HOLD 
command to the batch. However, it may be better if you performed some quick 
checks via your HMI to see that cream is available before the batch starts. 

Exception handling in equipment control is probably best handled directly in 
phase logic or in code that manipulates equipment or control modules. We’ve beat 
the flow failure example enough already, so consider the following example. If an 
ingredient can be stored in multiple tanks, you may wish to designate a primary 
and secondary ingredient tank. (Perhaps the operator can modify this selection.) 
When the phase that charges that ingredient starts, it pulls the ingredient from the 
primary tank. An exception occurs when the primary tank empties before the 
phase transfers the total amount needed. A control module monitoring the 
flowmeter will trigger an exception, causing the phase logic to switch to the 
secondary tank. This can all be done without operator intervention or holding or 
otherwise interrupting the batch. If the primary tank runs out and a secondary 
tank has not been selected, you may wish to prompt the operator for a secondary 
tank during the batch. Depending on your process or the volatility of your 
ingredients, you may not want to interrupt the batch. 

Your batch management package may have recommendations regarding handling 
exceptions. Sequencia strongly recommends against manipulating equipment 
phase states directly. OpenBatch relies on an ”executive” called a programmable 
logic interface (PLI) to monitor and maintain the states of all phases. Changing the 
states directly in equipment phases may confuse the poor PLI, which in turn may 
confuse the operators, which in turn may give you a headache. 

https://www.normsplash.com/ISA/172992692/Applying-S88-Batch-Control-from-a-Users-Perspective?src=spdf


Other Important Batch Control Items 85 

To help manage state changes, OpenBatch allows for user-defined failures that 
can trigger different state changes. In the case of our flow failure example, the 
control module monitoring the flowmeter can set a failure flag associated with 
that phase. The phase logic can monitor that flag and react accordingly. At Ben & 
Jerry’s, we created some phases that trigger a HOLD command if flow failures 
occur. 

ALLOCATING AND ARBITRATING EQUIPMENT USE 

If batch processing equipment were really cheap, companies would purchase a 
whole lot of it, and no piece of equipment would be needed outside of any 
particular equipment train. But batch processing equipment is not cheap, so 
companies may have to share equipment for different batches. Sometimes 
equipment breaks down too, which makes it vital that you have substitute 
equipment on hand. Here’s where allocation and avbitvation come in. 

As a particular batch or unit needs equipment and other resources to complete or 
continue processing, those resources must be assigned to it. Allocation is a form of 
coordination control that makes these assignments. When more than one batch or 
unit needs the same equipment or resource at the same time, arbitration 
determines who wins. 

The S88 section on allocation says: 

The very nature of batch processing requires that many asynchronous 
activities take place in relative isolation from each other with periodic 
points of synchronization. Many factors, both expected and unexpected, 
can affect the time required by one or more of the asynchronous activities 
from one point of synchronization to the next. For those reasons, and 
because of the inherent variation in any manufacturing process, the exact 
equipment which will be available at the time it is needed is very difficult 
to predict over a significant period of time. 

Wow, what a statement! A recipe does not have to be very complex to require 
different activities to take place separately (asynchvonously). This is fine initially, 
but the resulting intermediate products must sometime later combine 
(synchvonously) to produce another intermediate or a final product. When other 
recipes or unexpected maintenance make certain equipment unavailable, 
substitutes may be obtainable. 

Your site may use sophisticated scheduling to try to optimize a recipe’s processing 
sequence from the perspective of equipment usage. However, for those just-in- 
case situations you may wish to allow alternate equipment to be used if necessary. 
Recall from Chapter 4 that the path describes the usage and routing of the 
equipment that is necessary to make a batch. Allocation determines the path, 
whether fixed (the same equipment batch after batch) or dynamic (different 
equipment based on availability). 

https://www.normsplash.com/ISA/172992692/Applying-S88-Batch-Control-from-a-Users-Perspective?src=spdf


86 Applying S88 

If more than one unit can request another resource, the resource is considered 
common. Common resources help reduce capital or operating costs while 
maximizing process flexibility. An expensive powder blender that serves two 
units is a great example of a common resource. 

In S88 schemes, common resources are often implemented as equipment or 
control modules and may either be exclusive-use or shared-use. Only one unit at a 
time can use exclusive-use resources. Shared-use resources can be used by more 
than one unit at a time. If two units need an exclusive-use resource, one of them is 
going to be waiting a while. 

If two units need a shared-use resource, they may both be happy. However, just 
because a shared-use resource is available to more than one unit does not mean it 
can accommodate all units at all times. For example, a glycol cooling system can 
be a shared-use system. However, the cooling capacity of such a system has its 
limitations. Two units requiring a total thermal transfer that exceeds the capacity 
of the glycol system might cause a slowdown in both batch processing times or, 
worse, an overload of the cooling system. 

You must also be careful about how you design the use of these shared resources. 
Let’s say unit A needs the glycol system and starts a pump. Then unit B needs the 
system. The pump is already running, but that’s okay. When unit A is finished, it 
should not stop the pump or unit B will be affected. In this example, unit B should 
be responsible for shutting down the pump. This type of logic can easily be 
handled in equipment or control modules. 

Arbitration is necessary when more than one unit or resource needs the services 
of another resource. This resource contention must be dealt with somehow. Here 
are some methods for doing so: 

Wait until the resource owner is finished with the resource. (First come- 
first served approach.) 

Attempt to find a substitute resource. This may include attempting to alter 
the path. 

Preempt the resource owner and acquire the resource based on a set of 
priorities. This can get complicated, especially if the resource needed 
contains material that is incompatible with the recipe requiring it. 

All resource allocations can occur at the start of a recipe, effectively reserving 
resources, even though another recipe may require a reserved resource first. 
Allocation does not have to occur before a recipe begins. Dynamic allocation can 
occur as the batch is running. If more than one type of resource is available at a 
particular step in the process, a selection algorithm can be used to choose the best 
resource. Perhaps the material that makes up the resource (e.g., stainless steel 
versus titanium) will work with all recipes, but one material is preferred for the 
particular recipe running. Or one resource type processes quicker than another 

https://www.normsplash.com/ISA/172992692/Applying-S88-Batch-Control-from-a-Users-Perspective?src=spdf


Other Important Batch Control Items 87 

does. Allocation can be handled implicitly by S88 batch management software or 
explicitly by phase logic. 

We’ve discussed equipment, recipes, and important control issues. Now it’s time 
to begin exploring how to specify and design a batch management system. To do 
that we must first discuss what information is critical to a batch management 
system. That’s coming up next in Chapter 9. 

https://www.normsplash.com/ISA/172992692/Applying-S88-Batch-Control-from-a-Users-Perspective?src=spdf


BATC i ACT VITIES AND 

INFORMATION MANAGEMENT 

(THE CACTUS MODEL) 

Now that we’ve introduced the physical model, recipes, and how to link them, we 
think it’s time to start talking about defining and designing a batch management 
system. That’s the purpose of the next three chapters. Believe it or not, in our 
consideration of batch processing systems we’ve really been hanging out at a 
somewhat detailed level. Fasten your seatbelts, we’re about to rapidly ascend to 
20,000 feet. (That’s about 6,096 meters for our readers using the metric system . . . ) 

This chapter introduces the controlfunctions associated with batch manufacturing. 
”Wait!” you may exclaim, ”haven’t the last 87 or so chapters dealt with control 
functions?” Well, technically, no. According to S88, up to this point we’ve 
discussed control tasks. It appears as if the standard considers controlfunctions to 
be a superset of control tasks. Additionally control functions are grouped into 
control activities. So for review: a control activity is made up of control functions, 
which elaborate on control tasks. 

We personally believe our readers would find it much easier if we referred to 
these three items as batch management activities, batch management functions, and 
control tasks. However, too many S88 committee members know where we live, so 
we’re going to stick to the terminology in the standard. 

THE CONTROL ACTIVITY MODEL 

Figure 9.1 shows the control activity model. (If you listen very closely, you may 
hear committee members refer to this as the cactus model.) While it may not seem 
like much now, the control activity model provides an overall perspective on 
batch control and shows the primary relationships between the control activities. 

One important aspect of the cactus model is that it provides a description of the 
information that is shared between the control activities as well as between the 
control functions within each control activity. Depending on your perspective, the 
type of information needed at various parts of your process can really help drive 
your design. Jim has a philosophy (and Larry is tired of hearing it over and over 
again) that if people are a company’s most important asset, then information 

https://www.normsplash.com/ISA/172992692/Applying-S88-Batch-Control-from-a-Users-Perspective?src=spdf


90 Applying S88 

gure 9.1 The Control Activity Model 

Production Production 

Planning and Information 

Scheduling Management 

Recipe 

Management 

Process 

Management 

Unit 

Supervision 

Process 

Control 

I 

Outside the 

Protection 

should be its second most important asset. However, in reality, information can be 
a company’s number one quality problem when it’s inaccurate, not timely, or not 
assembled correctly. If your manufacturing process is not defined well enough, 
you may not be collecting the right information you need to make good decisions. 
Get input from the right people on what information is needed. Don’t guess; go to 
the source. 

Remember that in Chapter 1 we said S88 can be applied regardless of the degree 
of automation? That rule also applies to elements of the cactus model. The shared 
information we’re going to discuss in this chapter apply regardless of whether 
manual or automated systems are used to gather, store, analyze, and report the 
information. Figure 9.2 shows the cactus model with aggregate information flows 
that have been inserted between the control activities. 

https://www.normsplash.com/ISA/172992692/Applying-S88-Batch-Control-from-a-Users-Perspective?src=spdf

	Front Matter
	Foreword
	Introduction
	How We Chose S88 and RSBatch
	What You Should Read Depends on Who You are
	How We Chose to Organize This Book
	Table of Contents
	1. Basic Concepts
	1.1 Batch Manufacturing

