| 16. | HANSEN, A.G.<br>NA, T.Y.                     | A jet pump cavitation parameter based on NPSH. Paper 68-WA/FE-42, Am. Soc. mech. Engrs, 1968.                                                                                               |
|-----|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17. | REDDY, Y.R.<br>KAR, S.                       | Theory and performance of water jet pumps. <i>Proc. am. Soc. civil Engrs.</i> , <i>J. Hydraulic Div.</i> , Vol. 94, No. HY5, pp-1261-1281, 1968.                                            |
| 18. | SANGER, N.L.                                 | Non-cavitating performance of two low-area-ratio water jet pumps having throat lengths of 7.25 diameters. NASA tech. Note D-4445,1968.                                                      |
| 19. | SANGER, N.L.                                 | Cavitating performance of two low-area-ratio jet pumps having throat lengths of 7.25 diameters. NASA tech.Note D-4592, 1968.                                                                |
| 20. | SANGER, N.L.                                 | Noncavitating and cavitating performance of two low-area-ratio water jet pumps with throat lengths of 5.66 diameters. NASA tech. Note D-4759, 1968.                                         |
| 21. | SILVESTER, R.<br>MUELLER, N.H.G.             | Design data for the liquid-liquid jet pump. J. Hydraulic Research, Vol. 6. No. 2, pp. 129-162, 1968.                                                                                        |
| 22. | CAIRNS, J.R.<br>NA, T.Y.                     | Optimum design of water jet pumps. Paper 68-WA/FE-13, Am. Soc. mech. Engrs, 1969.                                                                                                           |
| 23. | CUNNINGHAM, R.G.<br>HANSEN, A.G.<br>NA, T.Y. | Jet pump cavitation. Paper 69-WA/FE-29, Am. Soc. mech. Engrs, 1969.                                                                                                                         |
| 24. | SANGER, N.L.                                 | Noncavitating and cavitating performance of several low-area-ratio water jet pumps having throat lengths of 3.54 diameters. NASA tech. Note D-5095, 1969.                                   |
| 25. | SANGER, N.L.                                 | An experimental investigation of several low-area-ratio water jet pumps. <i>J. basic Engng</i> , Vol. 92, No. 1, pp. 11-20, 1970.                                                           |
| 26. | SANGER, N.L.                                 | Fortran programs for the design of liquid-to-liquid jet pumps. NASA tech. Note D-6453, 1971.                                                                                                |
| 27. | KENTFIELD, J.A.C.<br>BARNES, R.W.            | The prediction of the optimum performance of ejectors. <i>Proc. Inst. mech. Engrs, Thermodynamics Fluid Mech. Group</i> , Vol. 186, Pt 54/72, pp. 671-681, 1972.                            |
| 28. | SILVESTER, R.<br>VONGVISESSOMJAI, S.         | The jet pump using liquids of different density. Paper 11, Symp. "Jet Pumps and Ejectors", Brit. Hydromechanics Res. Assoc., Cranfield, UK, 1972.                                           |
| 29. | VYAS, B.D.<br>KAR, S.                        | Standardisation of water jet pumps. Paper 10, Symp. "Jet Pumps and Ejectors", Brit. Hydromechanics Res. Assoc., Cranfield, UK, 1972.                                                        |
| 30. | WAKEFIELD, A.W.                              | Practical solids-handling jet pumps. Paper 12, Symp. "Jet Pumps and Ejectors", Brit. Hydromechanics Res. Assoc., Cranfield, UK, 1972.                                                       |
| 31. | CUNNINGHAM, R.G.                             | Liquid jet pump modelling; effects of axial dimensions on theory-experiment agreement, Paper Fl, 2nd Symp. "Jet Pumps and Ejectors", Brit. Hydromechanics Res. Assoc., Cranfield, UK, 1975. |

| 32. | WAKEFIELD, A.W. | Performance of solids-handling jet pumps at low Reynolds numbers.<br>Paper A3, 2nd Symp. "Jet Pumps and Ejectors", Brit. Hydromechanics<br>Res. Assoc., Cranfield, UK, 1975. |
|-----|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 33. | WAKEFIELD, A.W. | Jet pump set to take off. Coal, Gold and Base Minerals of Southern Africa, 1980.                                                                                             |
| 34. | GOVATOS, G.C.   | The slurry jet pump. J. Pipelines, Vol. 1, pp. 145-157, 1981.                                                                                                                |
| 35. | WAKEFIELD, A.W. | Hydraulic jet pumps for solids handling, Coal, Gold and Base Minerals of Southern Africa, 1981.                                                                              |
| 36. | WAKEFIELD, A.W. | Private communication from Mr. A.W. Wakefield, Wakefield and Imberg, Stamford, UK, 1985.                                                                                     |

### 10.2 References

The references are recommended sources of information supplementary to the information in this Item.

| 37. | MOODY, L.F.                 | Friction factors for pipe flow. Trans. am. Soc. mech. Engrs, Vol. 66, pp. 671-684, 1944.                                                                                                        |
|-----|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 38. | GREY, R.E.<br>WILSTED, H.D. | Performance of conical jet nozzles in terms of flow and velocity coefficients. NACA Rep. 933, Nat. adv. Comm. Aeronautics, USA, 1949.                                                           |
| 39. | ESDU                        | Introduction to design and performance data for diffusers. ESDU 76027, ESDU International Ltd, London, November 1976.                                                                           |
| 40. | ESDU                        | Friction losses for fully-developed flow in straight pipes. ESDU 66027, with Amendments A and B, ESDU International Ltd, London, April 1977.                                                    |
| 41. | MILLER, D.S.                | Internal flow systems. Vol.5, Fluid Engineering Series, British Hydromechanics Res. Assoc., Cranfield, UK, 1978.                                                                                |
| 42. | ESDU                        | Performance of conical diffusers in incompressible flow. ESDU 73024, ESDU International Ltd, London, March 1980.                                                                                |
| 43. | BSI                         | Specification for square-edged orifice plates, nozzles and venturi tubes inserted in circular cross section conduits running full. BS 1042: Section 1.1, British Standards Inst., London, 1981. |
| 44. | ESDU                        | Ejectors and jet pumps. Design and performance for compressible air flow. ESDU84029, ESDU International Ltd, London, December 1984.                                                             |

### 11. TABLES

| Parameter                        | Relationship                                           | Value |
|----------------------------------|--------------------------------------------------------|-------|
|                                  |                                                        |       |
| Primary pressure                 | $P_1 = [P_5(1+N) - P_2]/N$                             |       |
| Secondary pressure               | $P_2 = P_5 - N(P_1 - P_5)$                             |       |
| Discharge pressure               | $P_5 = (NP_1 + P_2)/(N+1)$                             |       |
| Pressure ratio                   | $N = (P_5 - P_2)/(P_1 - P_5)$                          |       |
| Primary flowrate                 | $Q_p = Q_s/M$                                          |       |
| Secondary flowrate               | $Q_s = M \times Q_p$                                   |       |
| Flow ratio                       | $M = Q_s / Q_p$                                        |       |
| Mixing chamber diameter          | D = L/7  or  L/5                                       |       |
| Mixing chamber length            | L = 7D or $5D$                                         |       |
| Primary nozzle diameter          | $d = D\sqrt{R}$                                        |       |
| Primary nozzle spacing           | $s \approx d$                                          |       |
| Diffuser included angle          | 2φ                                                     |       |
| Primary fluid density            | ρ <sub>p</sub>                                         |       |
| Secondary fluid density          | $\rho_s$                                               |       |
| Density ratio                    | $C = \rho_s / \rho_p$                                  |       |
| Cavitation index                 | $\sigma = (P_2 - p_v) / (\frac{1}{2} \rho_s V_{3c}^2)$ |       |
| Primary nozzle loss coefficient  | K <sub>p</sub>                                         |       |
| Secondary inlet loss coefficient | K <sub>s</sub>                                         |       |
| Mixing chamber loss coefficient  | K <sub>m</sub>                                         |       |
| Diffuser loss coefficient        | K <sub>d</sub>                                         |       |

### TABLE 11.1 Jet Pump Design Parameters - Calculation Sheet

| Source        | R value | <i>d</i> ( <b>mm</b> ) | Nozzle profile                                                                                  |
|---------------|---------|------------------------|-------------------------------------------------------------------------------------------------|
| Derivation 1  | 0.25    | 7.9                    | Conical inlet to<br>parallel section<br>(effect of $180^{\circ}$<br>bend included in<br>$K_p$ ) |
| Derivation 4  | 0.10    | 2.54                   | Elliptical                                                                                      |
| Derivation 4  | 0.133   | 2.54                   | Elliptical                                                                                      |
|               | 0.174   | 2.54                   | Conical                                                                                         |
|               | 0.174   | 2.54                   | Elliptical                                                                                      |
|               | 0.20    | 5.56                   | Elliptical                                                                                      |
|               | 0.30    | 4.39                   | Elliptical                                                                                      |
|               | 0.40    | 3.38                   | Emplical                                                                                        |
|               | 0.54    | 4.50                   | Conical                                                                                         |
|               | 0.60    | 4.39                   | Elliptical                                                                                      |
| Derivation 10 | _       | 10.7                   | Conical                                                                                         |
|               | _       | 10.7                   | Elliptical                                                                                      |
|               | _       | 10.7                   | Circular inlet to parallel section                                                              |
| Derivation 16 | _       | Varying                | Conical                                                                                         |
| Derivation 20 | 0.066   | 8.8                    | Circular arc, radius<br>175 mm                                                                  |
|               | 0.197   | 15.2                   | Circular arc, radius 203 mm                                                                     |
|               | 0.108   | 11.3                   | Circular arc, radius<br>190 mm                                                                  |
|               | 0.141   | 12.8                   | Circular arc, radius<br>190 mm                                                                  |
| Derivation 27 | _       | Varying                | Circular arc inlet,<br>radius $0.8d$ , to<br>parallel section,<br>length<br>5d                  |

### TABLE 11.2 Test Primary Nozzle Description (see Figure 2a)

| Source        | Inlet profile | K <sub>s</sub> value |
|---------------|---------------|----------------------|
| Derivation 1  | Conical       | 0.05                 |
| Derivation 15 | Conical       | 0.05                 |
| Derivation 17 | Bellmouth     | 0.108                |
| Derivation 30 | Bellmouth     | 0.04                 |

### TABLE 11.3 Secondary Flow Inlet Loss Coefficients





FIGURE 2a VARIATION OF  $K_p$  WITH REYNOLDS NUMBER

This is a preview. Click here to purchase the full publication.

54

# **ESDU 85032**



Secondary inlet Reynolds number ( $V_3 (D-d) / v_s \times 10^5$ 

FIGURE 2b VARIATION OF K<sub>s</sub> WITH REYNOLDS NUMBER





### FIGURE 3a VARIATION OF OPTIMUM AREA RATIO WITH FLOW AND PRESSURE RATIOS, FOR A DENSITY RATIO OF 1.0



FIGURE 3b EFFECT OF DENSITY RATIO ON VARIATION OF OPTIMUM AREA RATIO WITH FLOW RATIO