

Drag increment due to rear fuselage upsweep

Endorsed by The Royal Aeronautical Society

ESDU 80006

ESDU DATA ITEMS

Data Items provide validated information in engineering design and analysis for use by, or under the supervision of, professionally qualified engineers. The data are founded on an evaluation of all the relevant information, both published and unpublished, and are invariably supported by original work of ESDU staff engineers or consultants. The whole process is subject to independent review for which crucial support is provided by industrial companies, government research laboratories, universities and others from around the world through the participation of some of their leading experts on ESDU Technical Committees. This process ensures that the results of much valuable work (theoretical, experimental and operational), which may not be widely available or in a readily usable form, can be communicated concisely and accurately to the engineering community.

We are constantly striving to develop new work and review data already issued. Any comments arising out of your use of our data, or any suggestions for new topics or information that might lead to improvements, will help us to provide a better service.

THE PREPARATION OF THIS DATA ITEM

The work on this particular Data Item was monitored and guided by the Aerodynamics Committee. This Committee first met in 1942 and now has the following membership:

	irm	

Mr P.K. Jones — British Aerospace, Manchester Division

Vice-Chairman

Mr J. Weir — Salford University

Members

Mr D. Bonenfant — Aérospatiale, Toulouse, France
Mr E.A. Boyd — Cranfield Institute of Technology

Mr K. Burgin — Southampton University

Mr E.C. Carter — Aircraft Research Association

Mr J.R.J. Dovey — British Aerospace, Warton Division

Dr J. Flower — Bristol University

Mr H.C. Garner — Royal Aircraft Establishment

Mr A. Hipp — British Aerospace, Stevenage-Bristol Division
Dr B.L. Hunt* — Northrop Aircraft Group, Hawthorne, Calif., USA

Mr J. Kloos* — Saab-Scania, Linköping, Sweden

Mr J.R.C. Pedersen — Independent

Mr I.H. Rettie* — Boeing Aerospace Company, Seattle, Wash., USA

Mr F.W. Stanhope — Rolls-Royce Ltd, Derby

Mr J.W.H. Thomas — British Aerospace, Hatfield-Chester Division Mr H. Vogel — British Aerospace, Weybridge-Bristol Division.

The work on this Item was carried out in the Aircraft Motion Group of the Engineering Sciences Data Unit under the supervision of Mr P.D. Chappell, Group Head. The member of staff who undertook the technical work involved in the initial assessment of the available information and the construction and subsequent development of the Item was

Mr R.W. Gilbey — Senior Engineer.

This is a preview. Click here to purchase the full publication.

^{*} Corresponding Member

ESDU 80006

DRAG INCREMENT DUE TO REAR FUSELAGE UPSWEEP

CONTENTS

		Page
1.	NOTATION AND UNITS	1
2.	INTRODUCTION	
3.	METHOD	3
4.	ACCURACY AND APPLICABILITY	5
5.	DERIVATION AND REFERENCES	5
	5.1 Derivation	5
	5.2 References	6
6.	EXAMPLE	8
FIGU	URES 1 to 3	11-13

ESDU 80006

DRAG INCREMENT DUE TO REAR FUSELAGE UPSWEEP

1. NOTATION AND UNITS

		SI	British
A	aspect ratio of wing		
a	lift-curve slope of wing	radian ⁻¹	$radian^{-1}$
C_D	drag coefficient based on maximum cross-sectional area of fuselage		
ΔC_D	drag coefficient increment due to rear fuselage upsweep at constant body incidence		
\overline{c}_d	empirical mean value of local cross-flow drag coefficient over rear fuselage, $k\bar{c}_{ds}$		
\overline{c}_{ds}	empirical mean value of local cross-flow drag coefficient for fuselage cross-sections with smooth perimeters		
d	fuselage maximum depth	m	ft
G	function defined by Equation (3.2)		
Н	downwash parameter, see Equation (3.3)	radian	radian
k	factor on \bar{c}_{ds} allowing for effect of perimeter of fuselage cross-section not being smooth		
l	overall length of fuselage	m	ft
l_r	length of upswept part of fuselage	m	ft
R_l	Reynolds number based on fuselage length		
R_{w}	Reynolds number based on fuselage maximum width		
r	corner radius of fuselage (see Figure 3)	m	ft
S_p	planform area of upswept part of fuselage	m^2	ft^2
S_{ref}	maximum cross-sectional area of fuselage	m^2	ft^2
S_s	area of side-elevation of upswept part of fuselage	m^2	ft^2
S	wing semi-span	m	ft
w	fuselage maximum width	m	ft

Issued April 1980 With Amendments A and B, February 1988 – 13 pages

This is a preview. Click here to purchase the full publication.