

Profile drag of axisymmetric bodies at zero incidence for subcritical Mach numbers

Associated software: ESDUpac A7819

Endorsed by The Royal Aeronautical Society

ESDU DATA ITEMS

Data Items provide validated information in engineering design and analysis for use by, or under the supervision of, professionally qualified engineers. The data are founded on an evaluation of all the relevant information, both published and unpublished, and are invariably supported by original work of ESDU staff engineers or consultants. The whole process is subject to independent review for which crucial support is provided by industrial companies, government research laboratories, universities and others from around the world through the participation of some of their leading experts on ESDU Technical Committees. This process ensures that the results of much valuable work (theoretical, experimental and operational), which may not be widely available or in a readily usable form, can be communicated concisely and accurately to the engineering community.

We are constantly striving to develop new work and review data already issued. Any comments arising out of your use of our data, or any suggestions for new topics or information that might lead to improvements, will help us to provide a better service.

THE PREPARATION OF THIS DATA ITEM

The work on this particular Data Item which supersedes ESDU Aero B.02.04.01 to 03, was monitored and guided by the Aerodynamics Committee. This Committee first met in 1942 and now has the following membership:

Chairman Mr A.J. Wells	— Independent
Vice-Chairman	
Mr P.D. Chappell	- Independent
Members	
Mr K. Bradbrook	- Independent
Mr P. Camacho [*]	 Boeing, Long Beach, CA, USA
Dr P.C. Dexter	— Independent
Mr J.R.J. Dovey	— Independent
Prof. K.P. Garry	— Cranfield University
Prof. J.M.R. Graham	 Imperial College, London
Mr M.J. Green	Independent
Mr J.M. van den Heever	 Denel Dynamics, South Africa
Dr G.A. Johnson	 BAE SYSTEMS, Advanced Technology Centre, Filton, Bristol
Dr E.H. Kitchen	 Rolls-Royce Commercial Aero Engines Ltd, Derby
Mr C.S. Lee	 BAE SYSTEMS, Preston
Mr JB. Leterrier	 Airbus, Toulouse, France
Miss M. Maina	 Aircraft Research Association Ltd
Mr R.S.F. de Mello	— Embraer, Brazil
Mr A. Miller	 Airbus UK, Filton, Bristol
Mr E. Totland	 — Saab AB, Linköping, Sweden
Mr J. Tweedie	 Short Brothers plc, Belfast.

* Corresponding Member

The members of staff who undertook the technical work involved in the initial assessment of the available information and the construction and subsequent development of the Item were

Mr P.D. Chappell	 — Group Head
Mr S.F. Wood	 Principal Engineer.

Subsequent to the issue of ESDU 78019, Addendum A was prepared by Mr P.D. Chappell.

The person with the overall responsibility for the work in this subject area is Mr A.J. Clarke, Head of Aerodynamics Group.

PROFILE DRAG OF AXISYMMETRIC BODIES AT ZERO INCIDENCE FOR SUBCRITICAL MACH NUMBERS

CONTENTS

		Page
1.	NOTATION AND UNITS (SEE SKETCH 1.1)	1
2.	INTRODUCTION	3
3.	THE DRAG CALCULATION METHOD	3
4.	BASIS OF THE DRAG PREDICTION METHOD	4
	4.1 General	4
	4.2 Effect of Body Shape on Profile Drag Coefficient	4
	4.3 Corrections for Transition Position and Flow Conditions	4
	4.4 Flat Plate Mean Skin Friction Coefficient	5
5.	APPLICABILITY AND ACCURACY	6
	5.1 Applicability	6
	5.2 Accuracy	7
	5.2.1 Comparison with computed data	7
	5.2.2 Comparison with experimental data	7
6.	BODY GEOMETRICAL DATA	7
7.	DERIVATION AND REFERENCES	8
8.	EXAMPLES	9
	FIGURES 1 to 9	13 to 19
ADDF	ENDUM A SIMPLIFIED METHOD FOR PROFILE DRAG OF AXISYMMETRIC BODIES AT ZERO INCIDENCE FOR SUBCRITICAL MACH NUMBERS	21
A1.	ADDITIONAL NOTATION AND UNITS	21
A2.	INTRODUCTION	22
A3.	SIMPLIFIED METHOD	22
	A3.1 General	22
	A3.2 Axisymmetric Body Profile Drag at Datum Conditions	23
	A3.3 Effect of Boundary-layer Transition Position	23
	A3.4 Effect of Mach Number	24
	A3.5 Body Geometrical Data	25
	A3.6 Flat Plate Mean Skin Friction Coefficient	25

A4.	NON-CIRCULAR CROSS SECTIONS	26
A5.	APPLICABILITY AND ACCURACY	26
	A5.1 Applicability	26
	A5.2 Accuracy	27
A6.	ADDITIONAL REFERENCES	29
A7.	EXAMPLES	29
	A7.1 Example A1	29
	A7.2 Example A2	34
ADD	ENDUM B PROGRAM FOR CALCULATION OF PROFILE DRAG OF AXISYMMETRIC BODIES AT ZERO INCIDENCE FOR SUBCRITICAL MACH NUMBERS	
	(METHOD OF ADDENDUM A)	37
B1.	INTRODUCTION	37
B2.	PROGRAM	37
	B2.1 Input	37
	B2.2 Output	38
	B2.3 Running the Program	39

PROFILE DRAG OF AXISYMMETRIC BODIES AT ZERO INCIDENCE FOR SUBCRITICAL MACH NUMBERS

1. NOTATION AND UNITS (see Sketch 1.1)

		SI	British
A	afterbody parameter, $(l_a/D) \tan \tau$		
В	index in expression for flat plate mean skin friction coefficient with fully-turbulent boundary layer, see Equation (4.3)		
C_D	body profile drag coefficient based on surface area, $D_P/(q_{\infty} \times \pi DLC_S)$		
C_F	flat plate mean skin friction coefficient (based on skin friction and area of one side of plate)		
C_{F0}	flat plate mean skin friction coefficient (fully-turbulent boundary layer, $x_{tr}/L = 0$), see Equation (4.2)		
C_S	area coefficient, ratio of body surface area to surface area of enclosing cylinder, $S/(\pi DL)$		
C_V	volume (or prismatic) coefficient of body, ratio of body volume to volume of enclosing cylinder, $4V/(\pi D^2 L)$		
C _{Va}	volume coefficient of afterbody, $4V_a / (\pi D^2 l_a)$		
C_{Vf}	volume coefficient of forebody, $4V_f / (\pi D^2 l_f)$		
D	maximum diameter of body	m	ft
D_P	profile drag of body	Ν	lbf
F_{f}	correction to correlating parameter C_S/C_V^n to allow for forebody shape and length, see Section 4.2		
F_{M1} , F_{M2}	functions of Mach number, see Equations (4.4) and (4.5)		
K _M	correction factor for M , see Equation (4.1)		
K _{tr}	correction factor for x_{tr}/L , see Equation (4.1)		
<i>k</i> ₁	family parameter for Body 7 in ESDU 77028		
L	body length	m	ft
l _a	afterbody length	m	ft
	Issued July 1978 – 19 pages With Amendments A to D, March 2017 – 39 pages This page Amendment D		

l_f	forebody length	m	ft
l _m	midbody length	m	ft
M	free-stream Mach number		
п	function of C_V and D/L , see Section 4.2		
$\left. \begin{array}{c} p \\ q \end{array} \right\}$	functions of $l_f (l - C_{Vf})/L$, see Section 4.3		
q_{∞}	free-stream kinetic pressure	N/m ²	lbf/ft ²
R _L	Reynolds number based on body length		
S	body surface area	m ²	ft^2
V	body volume	m ³	ft^3
V _a	afterbody volume	m ³	ft^3
V_f	forebody volume	m ³	ft ³
x _{tr}	axial distance of boundary-layer transition from nose	m	ft
λ	normalised drag parameter, C_D/C_F		
λ_G	value of λ relating to required body at datum boundary-layer and flow conditions, see Section 4.2		
ρ ₀	nose radius of curvature	m	ft
$\bar{\rho}_0$	non-dimensional nose radius, $\rho_0 l_f / D^2$		
τ	tail half-angle	degree	degree

Sketch 1.1 Body geometry

This page Amendment C