

Ejectors and jet pumps: Computer program for design and performance for compressible gas flow

Associated software: ESDUpac A9242

Endorsed by The Institution of Chemical Engineers The Institution of Mechanical Engineers

ESDU DATA ITEMS

Data Items provide validated information in engineering design and analysis for use by, or under the supervision of, professionally qualified engineers. The data are founded on an evaluation of all the relevant information, both published and unpublished, and are invariably supported by original work of ESDU staff engineers or consultants. The whole process is subject to independent review for which crucial support is provided by industrial companies, government research laboratories, universities and others from around the world through the participation of some of their leading experts on ESDU Technical Committees. This process ensures that the results of much valuable work (theoretical, experimental and operational), which may not be widely available or in a readily usable form, can be communicated concisely and accurately to the engineering community.

We are constantly striving to develop new work and review data already issued. Any comments arising out of your use of our data, or any suggestions for new topics or information that might lead to improvements, will help us to provide a better service.

THE PREPARATION OF THIS DATA ITEM

The work on this particular Data Item was monitored and guided by the Internal Flow Panel, which first met in 1979 and had the following membership:

Chairman	
Dr J.A. Eaton	 University College Galway, Ireland
Members	
Mr D.A. Campbell	 Rolls-Royce Ltd, Derby
Mr J. Campbell	 Ove Arup and Partners
Dr C.J. Clark	 BP International Ltd
Dr D.J. Cockrell	 University of Leicester
Prof. D.H. Freeston*	 Auckland University, New Zealand
Dr M.E. Gill	 W.S. Atkins Science and Technology
Mr A.J. Green	— BHR Group Ltd
Dr A. Johnson	 Schlumberger Cambridge Research Ltd
Prof. J.L. Livesey	 University of Salford
Dr M. Moore	 Independent
Mr J.A. Ward	 AEA Technology, Harwell.

* Corresponding Member

This Item supersedes and incorporates the methods of ESDU 84029 and 88002. The work on ESDU 84029, for the design and performance of ejectors and jet pumps with compressible air flows, was monitored and guided in 1984 by the following Working Party[†]:

Mr J. Campbell	 Babcock Power Ltd
Dr D.J. Cockrell	 University of Leicester
Mr J.S. Drabble	 Royal Aircraft Establishment (Pyestock)
Dr R.S. Silvester	 British Hydromechanics Research Association
Mr A.W. Wakefield	 Wakefield and Imberg
Mr R. Whitaker	 British Aerospace (Warton).

The initial assessment of the available information on compressible air flows in ejectors and jet pumps and the subsequent development of ESDU 84029 was undertaken (under contract to ESDU) by^{\dagger}

Ms A.E. Gibson	—	Atkins Research and Development
Dr S.J. Murray	—	Atkins Research and Development.

(Continued on inside back cover)

Affiliations at the time are given

Page

EJECTORS AND JET PUMPS COMPUTER PROGRAM FOR DESIGN AND PERFORMANCE FOR COMPRESSIBLE GAS FLOW

ESDU 92042 describes a computer program for the design of gas ejectors and jet pumps to meet given requirements and for prediction of performance.

Two design methods are provided. A 'quick' method is based on data from a range of typical single nozzle ejectors and requires a minimum of input data. A detailed design method is also provided (based on a one-dimensional flow theory given in the Appendix) which enables a more detailed assessment of the effects of internal losses to be made. This method may also be applied to multi-nozzle or annular nozzle designs. The performance prediction method is also based on the one-dimensional theory and calculates the flow conditions throughout the ejector given the dimensions, loss factors and entry flow conditions. The use of the program is illustrated by three worked examples. The program is provided to run within ESDUview, a user-friendly environment for personal computer users. An executable version of this program is available.

CONTENTS

1.	NOT	ATION AND UNITS	1
2.	INTI	RODUCTION	4
3.	PUR	POSE AND SCOPE OF ESDUPAC A9242	5
4.	VER	SIONS OF THE PROGRAM	6
5.	DES	CRIPTION OF INPUT AND OUTPUT DATA	6
	5.1	Program Input	6
	5.2	Data Input Files	7
		5.2.1 General data input	7
		5.2.2 Data input for "Quick Design Procedure" (for air-air ejectors only)	8
		5.2.3 Data input for "Detailed Design Procedure"	10
		5.2.4 Data input for "Performance Prediction Procedure"	15
6.	MEC	HANICAL DESIGN CONSIDERATIONS	18
	6.1	Secondary Inlet and Primary Nozzle Assembly	18
	6.2	Primary Nozzle	18
	6.3	Primary Nozzle Position	19
	6.4	Mixing Duct	20
	6.5	Contraction or Diffuser	20
	6.6	Aspects of Some More Complex Designs	21
		6.6.1 Multi-nozzle ejectors	21
		6.6.2 Annular nozzle ejectors	21
		6.6.3 Pulsed ejectors	22
		6.6.4 Multi-stage ejectors	22
	6.7	Possible Design Problems	22

		6.7.1	Noise	22
		6.7.2	Unstable behaviour	22
7.	WOR	KED EY	KAMPLES	23
	7.1	Quick	Design Procedure	23
		7.1.1	Example data input file	23
		7.1.2	Output file	24
	7.2	Detail	ed Design Procedure	26
		7.2.1	Example data input file	27
		7.2.2	Output file	28
	7.3	Perfor	mance Prediction	30
		7.3.1	Example data input file	31
		7.3.2	Output file	33
8.	DERI	VATION	I AND REFERENCES	36
	8.1	Deriva	ition	36
9.	TABL	Æ		38
APP	ENDIX A	A – BAS	SIC METHOD FOR GAS FLOW THROUGH EJECTORS	40
	A.1	NOTE	S	40
	A.2	NOTA	TION AND UNITS	40
	A.3	LOSS	FACTORS	43
	A.4	OPER	ATING ASSUMPTIONS	43
	A.5	NON-	DIMENSIONAL PARAMETER x	44
	A.6	SECO	NDARY TO PRIMARY RATES OF MASS FLOW RATIO, r,,,	44
	A.7	THE I	PRIMARY NOZZLE EXPANSION RATIO, A'/Ath	45
	A.8	MIXI	NG DUCT ENERGY EQUATION	46
	A.9	MIXI	NG DUCT CONTINUITY EQUATION IN TERMS OF NON-DIMENSIONAL	
		PARA	METER, y	47
	A.10	MIXI	NG DUCT MOMENTUM EOUATION	48
	A.11	CONT	TRACTION OR DIFFUSER CONTINUITY EOUATION	48
	A.12	DESIG	GN SOLUTION METHODS	49
		A.12.1	For the Case Where r ₁ is Known	49
		A.12.2	For the Case Where r_2 is Known	51
		A.12.3	For the Case Where r ₃ is Known	52
	A.13	PERF	ORMANCE PREDICTION	54

EJECTORS AND JET PUMPS

Computer Program for Design and Performance for Compressible Gas Flow

1. NOTATION AND UNITS

Any consistent system of units may be used in the equations in this Item.*

		Units	
		SI	British
A	cross-sectional area	m^2	ft ²
A_{ME}	area ratio: A_4/A_e	_	_
A_R	area ratio: A_4/A'_e	-	_
A_R^*	area ratio: A_4/A_{th}	_	_
а	sonic velocity	m/s	ft/s
C_D	primary-nozzle discharge coefficient	_	_
d	diameter	m	ft
i	defines user estimated parameter	_	_
Κ	mixing duct momentum loss factor	_	_
L	length of mixing duct	m	ft
L_d	length of contraction or diffuser	m	ft
М	Mach number: V/a	_	_
ṁ	mass flow rate	kg/s	slug/s [†]
n	number of user estimates of parameter, number of nozzles	-	-
PP	primary parameter: $C_D(p'_{te} p''_{te}) / A_R$	_	_
p_t	absolute total pressure	[‡] kPa	lbf/ft ²
R	gas constant (for air, $R \approx 287$ J/kg K, 3090 ft lbf/slug K)	J/kg K	ft lbf/slug K^{\dagger}
r _m	mass flow ratio: \dot{m}''/\dot{m}'	_	_
S	length of mixing duct entry	m	ft
SP	secondary parameter: $(p_{te}''/p_4)(A_R - 1)/A_R$	-	_

For footnotes see end of Notation Section.

Issued December 1992 With Amendment B – March 2007 Re-issued June 2011 – 54 pages

T _t	absolute total temperature	Κ	Κ
V	stream velocity	m/s	ft/s
γ	ratio of specific heat capacity at constant pressure to that at constant volume (for air, $\gamma \approx 1.4$)	_	_
η_d	contraction or diffuser total-pressure recovery: p_{t5}/p_{t4}	_	_
η _i	secondary flow inlet efficiency: p_{te}''/p_{t0}	_	_
ϕ_d	contraction or diffuser wall angle	degrees	degrees
ϕ_m	mixing duct wall equivalent angle	degrees	degrees

* For many parameters ESDUpac A9242 uses non-consistent, but more commonly-used, units to simplify the use of the program. The units required by the program are shown in Tables 5.1, 5.2, 5.3 and 5.4 and are displayed on-screen when running ESDUpac A9242 in ESDUview (see Section 4).

[†] 1 slug = 32.174 lb mass.

[‡] 1 kPa = 1000 N/m²

Subscripts

е	primary nozzle exit plane
th	primary nozzle throat
max	upper limit of parameter
0	secondary flow entry plane
1	primary nozzle entry plane
3	mixing duct entry plane
4	mixing duct exit plane
5	contraction or diffuser exit plane

The reference planes are defined in Sketch 1.1. Note that, for constant area mixing, planes 2 and 3 are coincident and are referred to by subscript e.

Superscripts

- ' refers to primary stream or primary nozzle
- " refers to secondary stream or secondary inlet

This page Amendment A

Sketch 1.1 Ejector configuration and typical cases.

This page Amendment A