

Flow induced acoustic resonance in tubular heat exchangers

This is a preview. Click here to purchase the full publication.

ESDU DATA ITEMS

Data Items provide validated information in engineering design and analysis for use by, or under the supervision of, professionally qualified engineers. The data are founded on an evaluation of all the relevant information, both published and unpublished, and are invariably supported by original work of ESDU staff engineers or consultants. The whole process is subject to independent review for which crucial support is provided by industrial companies, government research laboratories, universities and others from around the world through the participation of some of their leading experts on ESDU Technical Committees. This process ensures that the results of much valuable work (theoretical, experimental and operational), which may not be widely available or in a readily usable form, can be communicated concisely and accurately to the engineering community.

We are constantly striving to develop new work and review data already issued. Any comments arising out of your use of our data, or any suggestions for new topics or information that might lead to improvements, will help us to provide a better service.

THE PREPARATION OF THIS DATA ITEM

The work on this particular Data Item was monitored and guided by the following Working Party on behalf of the Heat Transfer Steering Group:

Mr F.C. Brothwell	—	Foster Wheeler Energy Ltd
Dr H.G.D. Goyder		Atomic Energy Authority, Harwell
Mr C.W. Reeves	—	Imperial Chemical Industries plc
Mr J.S. Wharmby	_	Babcock Power Ltd.

The Heat Transfer Steering Group first met in 1966 and now has the following membership:

Chairman	
Mr D. Butterworth	— HTFS, Atomic Energy Authority, Harwell
Vice-Chairman	
Dr R. Cheesewright	 Queen Mary College, London
Members	
Mr R.J. Allam	 Air Products Ltd
Dr T.R. Bott	 Birmingham University
Prof. P.J. Heggs	 Bradford University
Mr T.J. Loraine	 Vital Technologies Ltd
Dr A.C. Pauls [*]	— Monsanto Company, USA
Mr A.C. Rapier	 Atomic Energy Authority, Windscale
Prof. R.H. Sabersky*	 California Institute of Technology, USA
Mr E.A.D. Saunders	 Independent
Mr R.A. Smith	 Independent
Dr J. Taborek [*]	 Independent
Mr M.A. Taylor	 Independent
Mr D.A. Winkworth	 Foster Wheeler Energy Ltd.
* Corresponding Member	

The construction and subsequent development of the Data Item was undertaken by

Mr G.H. Walter

- Head of Heat Transfer, Internal Flow and Physical Data.

This is a preview. Click here to purchase the full publication.

FLOW INDUCED ACOUSTIC RESONANCE IN TUBULAR HEAT EXCHANGERS

CONTENTS

			Page
1.	NOT	ATION AND UNITS	1
2.	PUR	POSE AND SCOPE	3
3.	THE BUN	CHARACTERISTICS OF ACOUSTIC RESONANCE IN HEAT EXCHANGE DLES	ER TUBE 3
4.	PRE	DICTION OF ACOUSTIC FREQUENCY	6
	4.1	Calculation for a Vessel with no Internals	6
	4.2	Calculation of Acoustic Velocity in a Vessel with no Internals	9
	4.3	Correction for the Presence of Tubes	9
5.	PRE	DICTION OF THE RESONANCE CONDITION	10
	5.1	Description	10
	5.2	Acoustic Strouhal Number for Plain Tube Bundles	11
		5.2.1 Acoustic Strouhal number for in-line bundles	12
		5.2.2 Acoustic Strouhal number for staggered bundles	13
	5.3	Low-fin Tube Bundles	13
	5.4	High-fin Tube Bundles	14
	5.5	Application to Two-phase Flows	14
6.	PRE	DICTION AND SIGNIFICANCE OF ACOUSTIC DAMPING	15
7.	DAN	IAGE DUE TO ACOUSTIC RESONANCE	16
	7.1	Tube Damage	16
	7.2	Damage to Associated Components	16
8.	INFO	ORMATION AND DATA REQUIREMENTS	17
9.	SOL	UTIONS TO PROBLEMS AT THE DESIGN STAGE	18
	9.1	Installation of Deresonating Baffles	18
		9.1.1 Deresonating baffles in bundles in rectangular ducts	18
		9.1.2 Deresonating baffles in shell-and-tube exchangers	20
	9.2	Exchanger Geometry Changes	22

	9.2.1 Increased tube and segmental baffle pitch	22
	9.2.2 Alternative segmental baffle types for shell-and-tube exchangers	22
	9.2.3 Alternative shell type for shell-and-tube exchangers	23
	9.2.4 Irregular tube pitch	23
10.	SOLUTIONS TO PROBLEMS WITH INSTALLED EXCHANGERS	24
	10.1 Confirmation of the Problem	24
	10.2 Solutions	24
11.	CALCULATION PROCEDURE	25
12.	EXAMPLE	26
13.	REFERENCES AND DERIVATION	30
	13.1 References	30
	13.2 Derivation	31
	FIGURES 1 to 5	33 to37

FLOW INDUCED ACOUSTIC RESONANCE IN TUBULAR HEAT EXCHANGERS

1. NOTATION AND UNITS

		Units	
		SI	British
С	velocity of sound (Equation (4.5))	m/s	ft/s
D	inside diameter of shell of circular duct	m	ft
d	outside diameter of tube	m	ft
f	frequency	Hz	Hz
<i>8</i> _c	constant of proportionality in Newton's second law of motion	_ (1.0)	lb ft/s ² lbf (32.18)
L	rectangular duct dimension	m	ft
М	Mach number, ratio of flow velocity to local speed of sound in fluid medium	_	-
MW	relative molecular mass (molecular weight)	kg/kmol	lb/lbmol
<i>n</i> , <i>m</i> , <i>p</i>	rectangular duct mode numbers for transverse, tube axis and gas flow directions respectively (Equation (4.1))	-	_
Р	pressure	N/m ² (Pa)	lbf/ft ²
р	tube pitch (Sketch 4.3)	m	ft
p_l	longitudinal tube pitch (Sketch 5.1)	m	ft
<i>P</i> _t	transverse tube pitch (Sketch 5.1)	m	ft
R	universal gas constant	J/kg mol K (8314.3)	ft lbf/lb mol°R (1545)
Re	Reynolds number = $\rho V d/\eta$	_	_
S	Strouhal number = $f d/V$	_	_
Т	absolute temperature	К	°R
V	flow velocity based on straight line gap or transverse flow area (Sketch 5.1)	m/s	ft/s
X _l	longitudinal tube pitch ratio, p_l/d (Sketch 5.1)	-	-

Issued December 1988 – 37 pages

This is a preview. Click here to purchase the full publication.

X _t	transverse tube pitch ratio, p_t/d (Sketch 5.1)	_	_
x _g	vapour mass fraction (mass flow rate of vapour/total mass flow rate)	_	-
Ζ	gas compression factor	_	_
γ	ratio of gas specific heat capacities	_	_
Δ^*	Fitzpatrick's acoustic damping parameter, defined in Equation (6.3)	_	_
η	dynamic viscosity of gas	kg/m s	lb/ft s
λ	mode constant (Equation (4.3))	_	_
ρ	density	kg/m ³	lb/ft ³
ρ_g, ρ_l	gas and liquid phase densities respectively in a two-phase vapour-liquid flow	kg/m ³	lb/ft ³
σ	bundle solidity (Sketch (4.3))	_	_
Ψ	Chen's acoustic damping parameter, defined in Equation (6.2)	-	_

Extra subscripts

a	acoustic
е	excitation
eff	effective
g	gas or vapour phase
tp	two-phase
x, y, z	rectangular duct dimensions in transverse, tube axis and gas flow directions respectively
α	number of diametral pressure nodes in circular duct
β	number of concentric circular pressure nodes in circular duct