

C64

Quantitative Measurement of Proteins and Peptides by Mass Spectrometry

This guideline describes the design, development, and validation of quantitative assays for proteins and peptides by mass spectrometry.

A guideline for global application developed through the Clinical and Laboratory Standards Institute consensus process.

Clinical and Laboratory Standards Institute Setting the standard for quality in medical laboratory testing around the world.

The Clinical and Laboratory Standards Institute (CLSI) is a not-for-profit membership organization that brings together the varied perspectives and expertise of the worldwide laboratory community for the advancement of a common cause: to foster excellence in laboratory medicine by developing and implementing medical laboratory standards and guidelines that help laboratories fulfill their responsibilities with efficiency, effectiveness, and global applicability.

Consensus Process

Consensus—the substantial agreement by materially affected, competent, and interested parties—is core to the development of all CLSI documents. It does not always connote unanimous agreement but does mean that the participants in the development of a consensus document have considered and resolved all relevant objections and accept the resulting agreement.

Commenting on Documents

CLSI documents undergo periodic evaluation and modification to keep pace with advances in technologies, procedures, methods, and protocols affecting the laboratory or health care.

CLSI's consensus process depends on experts who volunteer to serve as contributing authors and/or as participants in the reviewing and commenting process. At the end of each comment period, the committee that developed the document is obligated to review all comments, respond in writing to all substantive comments, and revise the draft document as appropriate.

Comments on published CLSI documents are equally essential and may be submitted by anyone, at any time, on any document. All comments are managed according to the consensus process by a committee of experts.

Appeal Process

When it is believed that an objection has not been adequately considered and responded to, the process for appeal, documented in the CLSI Standards Development Policies and Processes, is followed.

All comments and responses submitted on draft and published documents are retained on file at CLSI and are available upon request.

Get Involved—Volunteer!

Do you use CLSI documents in your workplace? Do you see room for improvement? Would you like to get involved in the revision process? Or maybe you see a need to develop a new document for an emerging technology? CLSI wants to hear from you. We are always looking for volunteers. By donating your time and talents to improve the standards that affect your own work, you will play an active role in improving public health across the globe.

For additional information on committee participation or to submit comments, contact CLSI.

Clinical and Laboratory Standards Institute P: +1.610.688.0100 F: +1.610.688.0700 www.clsi.org standard@clsi.org

Quantitative Measurement of Proteins and Peptides by Mass Spectrometry

Cory Bystrom, PhD
Russell P. Grant, PhD
Lorin M. Bachmann, PhD, DABCC, MT(ASCP)
Mari DeMarco, PhD
Daniel T. Holmes, MD, FRCPC
Andrew N. Hoofnagle, MD, PhD
Daniel Intelmann, PhD
Doug Jeffery, PhD

Mark M. Kushnir, PhD Paula Ladwig, MS, MT(ASCP) Mark S. Lowenthal, PhD Stephen R. Master, MD, PhD Christopher M. Shuford, PhD Stefani Thomas, PhD, NRCC Jeffrey Whiteaker, PhD

Abstract

Clinical and Laboratory Standards Institute guideline C64—Quantitative Measurement of Proteins and Peptides by Mass Spectrometry provides a framework for developing clinical protein and peptide assays from conception to validation. This guideline is intended for those who have experience with traditional small-molecule liquid chromatography—mass spectrometry (LC-MS) but not with protein and peptide analysis. Although closely related to traditional small-molecule analysis by LC-MS, protein and peptide analysis involves unique challenges and necessitates complex workflows, which are covered in detail. To enhance translation of assays to clinical use, this guideline focuses on method development aligned with clinically appropriate analytical validation.

Clinical and Laboratory Standards Institute (CLSI). *Quantitative Measurement of Proteins and Peptides by Mass Spectrometry.* 1st ed. CLSI guideline C64 (ISBN 978-1-68440-110-9 [Print]; ISBN 978-1-68440-111-6 [Electronic]). Clinical and Laboratory Standards Institute, USA, 2021.

The Clinical and Laboratory Standards Institute consensus process, which is the mechanism for moving a document through two or more levels of review by the health care community, is an ongoing process. Users should expect revised editions of any given document. Because rapid changes in technology may affect the procedures, methods, and protocols in a standard or guideline, users should replace outdated editions with the current editions of CLSI documents. Current editions are listed in the CLSI catalog and posted on our website at www.clsi.org.

If you or your organization is not a member and would like to become one, or to request a copy of the catalog, contact us at:

P: +1.610.688.0100 F: +1.610.688.0700 E: customerservice@clsi.org W: www.clsi.org

This is a preview. Click here to purchase the full publication.

Copyright ©2021 Clinical and Laboratory Standards Institute. Except as stated below, any reproduction of content from a CLSI copyrighted standard, guideline, derivative product, or other material requires express written consent from CLSI. All rights reserved. Interested parties may send permission requests to permissions@clsi.org.

CLSI hereby grants permission to each individual member or purchaser to make a single reproduction of this publication for use in its laboratory procedures manual at a single site. To request permission to use this publication in any other manner, e-mail permissions@clsi.org.

Suggested Citation

CLSI. *Quantitative Measurement of Proteins and Peptides by Mass Spectrometry.* 1st ed. CLSI guideline C64. Clinical and Laboratory Standards Institute; 2021.

C64-Ed1
ISBN 978-1-68440-110-9 (Print)
ISBN 978-1-68440-111-6 (Electronic)
ISSN 1558-6502 (Print)
ISSN 2162-2914 (Electronic)

Volume 41, Number 6

Committee Membership

Consensus Council

James R. Petisce, PhD

Chairholder

BD Diagnostic Systems

USA

Tania Motschman, MS, MT(ASCP)SBB

Vice-Chairholder

USA

Deirdre Astin, MS, MT(ASCP)

USA

Anne T. Daley, MS, MT(ASCP)DLM,

CMQ/OE(ASQ)CSBB

USA

Avis Danishefsky, PhD FDA Center for Devices and

Radiological Health

USA

Collette Fitzgerald, PhD
Centers for Disease Control and

Prevention

USA

Michelle McLean, MS, MT(ASCP), BS

Greiner Bio-One, Inc.

USA

James H. Nichols, PhD, DABCC, FAACC

Vanderbilt University School of

Medicine USA M. Laura Parnas, PhD, DABCC

Roche Diagnostics

USA

Victoria Petrides, MS

Abbott USA

Matthew A. Wikler, MD, FIDSA, MBA

IDTD Consulting

USA

Document Development Committee on Quantitative Measurement of Proteins and Peptides by Mass Spectrometry

Cory Bystrom, PhD Chairholder

Cleveland HeartLab, LLC

USA

Russell P. Grant, PhD Vice-Chairholder

Laboratory Corporation of America,

Inc. USA

Lorin M. Bachmann, PhD, DABCC,

MT(ASCP)

VCU Health System

USA

Mark W. Duncan, PhD Veritomyx Inc.

USA

Daniel T. Holmes, MD, FRCPC

St. Paul's Hospital

Canada

Andrew N. Hoofnagle, MD, PhD University of Washington Medical

Center

USA

Doug Jeffery, PhD

FDA Center for Devices and

Radiological Health

USA

Paula Ladwig, MS, MT(ASCP)

Mayo Clinic USA

Mark S. Lowenthal, PhD

National Institute of Standards and

Technology USA

Stephen R. Master, MD, PhD Children's Hospital of Philadelphia

USA

Expert Panel on Clinical Chemistry and Toxicology

Lorin M. Bachmann, PhD, DABCC, MT(ASCP) Chairholder

VCU Health System

USA

Kamisha Johnson-Davis, PhD, DABCC,

FACB

Vice-Chairholder ARUP Laboratories

USA

David Alter, MD

Emory University Hospital

USA

Ronald Booth, PhD, FCACB, FACC

The Ottawa Hospital

Canada

Johanna Camara, PhD

National Institute of Standards and

Technology

USA

Theodore J. DiMagno, PhD Ortho Clinical Diagnostics, Inc.

USA

Marianela Perez-Torres, MT, PhD FDA Center for Devices and

Radiological Health

USA

Daniel Schwanzar Phadia GmBh

Germany

Richard Y. Wang, DO

Centers for Disease Control and

Prevention USA

Carl E. Wolf, PhD, MS, F-ABFT

VCU Health System

USA

Staff

Clinical and Laboratory Standards Institute

USA

Nisha Fernandes, MS, MBA

Project Manager

Megan L. Tertel, MA, ELS Editorial Manager

Catherine E.M. Jenkins, ELS

Editor

Kristy L. Leirer, MS

Editor

Laura Martin

Editor

Acknowledgment

CLSI, the Consensus Council, and the Document Development Committee on Quantitative Measurement of Proteins and Peptides by Mass Spectrometry gratefully acknowledge the following volunteers for their important contributions to the development of this guideline:

Jennifer Powers Carson, PhD Washington University in St. Louis USA

Donald Walt Chandler, PhD Laboratory Corporation of America, Inc.

Tom Collier Valley Medical Center USA

USA

Mari DeMarco, PhD St. Paul's Hospital Canada

Ashley Beasley Green, PhD National Institute of Standards and Technology USA

Matthew Humbard, PhD FDA Center for Devices and Radiological Health USA Daniel Intelmann, PhD Roche Diagnostics GmbH Germany

Richard King
PharmaCadence Analytical Services,
LLC

Mark M. Kushnir, PhD ARUP Laboratories

USA

USA

Amanda G. Paulovich, MD, PhD Fred Hutchinson Cancer Research Center

USA

Jesse C. Seegmiller, PhD University of Minnesota Medical Center, Fairview USA

Christopher M. Shuford, PhD Laboratory Corporation of America, Inc. USA Stefani Thomas, PhD, NRCC University of Minnesota USA

Faye Vazvaei Merck & Co. USA

Jeffrey Whiteaker, PhD Fred Hutchinson Cancer Research Center USA

Yan Victoria Zhang, PhD University of Rochester Medical Center USA

Contents

Abstract	i
Committee Membership	iii
Foreword	ix
Chapter 1: Introduction	1
1.1 Scope	2
1.2 Standard Precautions	2
1.3 Terminology	3
Chapter 2: Path of Workflow	9
Chapter 3: Measurands	13
3.1 Insulin-like Growth Factor 1	15
3.2 Thyroglobulin	15
3.3 Apolipoproteins	16
3.4 Glycated Hemoglobin	16
Chapter 4: Workflows and Instrumentation	17
4.1 Workflows	18
4.2 Instrumentation	21
Chapter 5: Internal Standards	25
5.1 Types, Molecular Forms, and Applications	26
5.2 Common Internal Standard Structural Motifs	27
5.3 Effective Use of Internal Standards	30
5.4 Order of Addition	31
5.5 Quality Considerations	32
Chapter 6: Calibration	37
6.1 Harmonization	38
6.2 Standardization	38
6.3 Approaches to Calibration	39
6.4 Errors in Calibration	40
6.5 Choice of Calibrator Matrix	41
6.6 Choice of Calibrant	42
6.7 Calibrator Qualification	43
6.8 Methods of Concentration Assignment.	45
6.9 Calibration for Post-Translational Modifications.	46
6.10 Practical Use for Routine Production	47

Contents (Continued)

Chapter 7: Assay Development	49
7.1 Feasibility Determination and Planning	50
7.2 Definition of the Measurand	50
7.3 Empirical Optimization	54
7.4 Quality Control and Proficiency Testing Materials	67
7.5 Prevalidation Performance Evaluation	67
Chapter 8: Validation	69
8.1 General Considerations for Validation Planning	70
8.2 Imprecision and Reproducibility	71
8.3 Analytical Sensitivity: Lower Limit of the Measuring Interval	72
8.4 Linearity and Extended Measuring Intervals	73
8.5 Measurand Stability	74
8.6 Reagent Stability	74
8.7 Analytical Selectivity, Interferences, and Matrix Effect	74
8.8 Carryover	75
8.9 Quality Monitoring: Ion Transition Ratios	76
8.10 Accuracy, Trueness, and Method Comparison	76
8.11 Validation of Acceptable Sample Matrixes.	78
8.12 Validation of the Clinical Cutoff	78
8.13 Ongoing Performance Monitoring.	79
Chapter 9: Conclusion	85
Chapter 10: Supplemental Information	87
References	88
The Quality Management System Approach	100
Polated CLCL Peferance Materials	101

Foreword

This guideline is intended to accompany CLSI documents C62¹ and EP19.² Many of the recommendations found in CLSI documents C62¹ and EP19² also apply to liquid chromatography—mass spectrometry (MS) protein measurements, and commonalities are highlighted. However, this guideline primarily concentrates on aspects that are unique to quantitative measurement of proteins and peptides by MS.

NOTE: The content of this guideline is supported by the CLSI consensus process and does not necessarily reflect the views of any single individual or organization.

KEY WORDS

Assay development Mass spectrometry Surrogate peptide

Bioanalysis Peptide Validation

Liquid chromatography Protein