BS EN IEC 61400-6:2020

BSI Standards Publication

Wind energy generation systems

Part 6: Tower and foundation design requirements

National foreword

This British Standard is the UK implementation of EN IEC 61400-6:2020. It is identical to IEC 61400-6:2020.

The UK participation in its preparation was entrusted to Technical Committee PEL/88, Wind turbines.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2020 Published by BSI Standards Limited 2020

ISBN 978 0 580 93175 8

ICS 27.180

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 June 2020.

Amendments/corrigenda issued since publication

Date

Text affected

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN IEC 61400-6

June 2020

ICS 27.180

English Version

Wind energy generation systems - Part 6: Tower and foundation design requirements (IEC 61400-6:2020)

Systèmes de génération d'énergie éolienne - Partie 6 : Exigences en matière de conception du mât et de la fondation (IEC 61400-6:2020) Windenergieanlagen - Teil 6: Auslegungsanforderungen an Türme und Fundamente (IEC 61400-6:2020)

This European Standard was approved by CENELEC on 2020-05-26. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2020 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.

Ref. No. EN IEC 61400-6:2020 E

European foreword

The text of document 88/751/FDIS, future edition 1 of IEC 61400-6, prepared by IEC/TC 88 "Wind energy generation systems" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN IEC 61400-6:2020.

The following dates are fixed:

•	latest date by which the document has to be implemented at national	(dop)	2021-02-26
	level by publication of an identical national standard or by endorsement		

• latest date by which the national standards conflicting with the (dow) 2023-05-26 document have to be withdrawn

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.

Endorsement notice

The text of the International Standard IEC 61400-6:2020 was approved by CENELEC as a European Standard without any modification.

In the official version, for Bibliography, the following notes have to be added for the standards indicated:

ISO 148-1	NOTE	Harmonized as EN ISO 148-1
ISO 9001	NOTE	Harmonized as EN ISO 9001
ISO/IEC 17025	NOTE	Harmonized as EN ISO/IEC 17025

Annex ZA

(normative)

Normative references to international publications with their corresponding European publications

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: www.cenelec.eu.

Publication	Year	<u>Title</u>	EN/HD	Year
IEC 61400-1	2019	Wind energy generation systems - Part 1: Design requirements	EN IEC 61400-1	2019
IEC 61400-2	-	Wind turbines - Part 2: Small wind turbines	EN 61400-2	-
IEC 61400-3-1	2019	Wind energy generation systems - Part 3-1: Design requirements for fixed offshore wind turbines	EN IEC 61400-3-1	2019
ISO 2394	2015	General principles on reliability for structures	-	-
ISO 22965-1	-	Concrete - Part 1: Methods of specifying and guidance for the specifier	-	-
ISO 22965-2	-	Concrete - Part 2: Specification of constituent materials, production of concrete and compliance of concrete	-	-
ISO 22966	-	Execution of concrete structures	-	-
ISO 6934	series	Steel for the prestressing of concrete	-	-
ISO 6935	series	Steel for the reinforcement of concrete	-	-
ISO 9016	2012	Destructive tests on welds in metallic materials - Impact tests - Test specimen location, notch orientation and examination	EN ISO 9016	2012
ISO 12944	series	Paints and varnishes - Corrosion protection of steel structures by protective paint systems	-	-
EN 1993-1-9	2005	Eurocode 3: Design of steel structures - Part 1-9: Fatigue	-	-
EN 1993-3-2	2006	Eurocode 3: Design of steel structures - Part 3-2: Towers, masts and chimneys - Chimneys	-	-

CONTENTS

FC	REWC)RD	9
IN	TRODU	JCTION	11
1	Scop	be	12
2	Norm	native references	12
3	Term	ns and definitions	13
4	Svm	bols and abbreviated terms	17
-	4.1	Symbols	
	4.2	Abbreviated terms	
5		gn basis including loading	
	5.1	General	
	5.2	Basis of design	
	5.2.1		
	5.2.2		
	5.2.3	Principles of limit state design	21
	5.2.4	Structural analysis	21
	5.2.5	5 Assessments by tests	22
	5.3	Materials	22
	5.4	Loads	22
	5.4.1	Use of IEC 61400-1 or IEC 61400-2 load cases and partial safety factors for loads	22
	5.4.2	Superseding of IEC 61400-1 or IEC 61400-2 partial safety factors for materials	22
	5.4.3	3 Serviceability load levels	23
	5.4.4	Load combinations in ULS	24
	5.4.5		
	5.4.6		
	5.4.7		
	5.4.8	·	
	5.4.9		26
	5.4.1	10 Loads due to geometric tolerances and elastic deflections in tower verticality	26
	5.5	Load data and interface reporting requirements	
	5.5.1	•	
	5.5.2	•	
	5.5.3	,	
	5.5.4	5	
	5.5.5	•	
	5.6	General structural design requirements	
	5.6.1	,	
	5.6.2 5.7	5	
6		Delivery documentation	
0			
	6.1 6.2	General Basis of design	
	6.2 6.3	Materials	
	6.3.1		
	6.3.2		
	0.0.2		

- 3 -	
-------	--

	6.3.3	Bolts and anchors	
	6.4	Ultimate strength analysis for towers and openings	
	6.4.1	General	
	6.4.2	Partial safety factors	
	6.4.3	Verification of ultimate strength	
	6.4.4	Tower assessment	
	6.4.5	Detail assessments	
	6.5	Stability	
	6.5.1	General	
	6.5.2	Partial safety factor	.34
	6.5.3	Assessment	
	6.5.4	Door frames/stiffeners	
	6.6	Fatigue limit state	
	6.6.1	General	
	6.6.2	Partial safety factor for materials	
	6.6.3	Assessment	.36
	6.6.4	Details	
	6.7	Ring flange connections	.36
	6.7.1	General	
	6.7.2	Design assumptions and requirements, execution of ring flanges	
	6.7.3	Ultimate limit state analysis of flange and bolted connection	.38
	6.7.4	Fatigue limit state analysis of bolted connection	.38
	6.8	Bolted connections resisting shear through friction	.40
	6.8.1	General requirements	
	6.8.2	Test-assisted design	.41
	6.8.3	Design without test	.42
7	Conc	rete towers and foundations	.42
	7.1	General	.42
	7.2	Basis of design	.42
	7.2.1	Reference standard for concrete design	.42
	7.2.2	Partial safety factors	.43
	7.2.3	Basic variables	.43
	7.3	Materials	.45
	7.4	Durability	.46
	7.4.1	Durability requirements	.46
	7.4.2	Exposure classes	.46
	7.4.3	Concrete cover	.46
	7.5	Structural analysis	.46
	7.5.1	Finite element analysis	.46
	7.5.2	Foundation slabs	.47
	7.5.3	Regions with discontinuity in geometry or loads	.47
	7.5.4	Cast in anchor bolt arrangements	.48
	7.6	Concrete to concrete joints	.48
	7.7	Ultimate limit state	.48
	7.7.1	General	.48
	7.7.2	Shear and punching shear	.48
	7.8	Fatigue limit state	.49
	7.8.1	General	.49
	7.8.2	Reinforcement and prestressing steel fatigue failure	.49

7.8	.3	Concrete fatigue failure	.49
7.9	Ser	viceability limit state	. 50
7.9	.1	Load dependent stiffness reduction	. 50
7.9	.2	Stress limitation	. 50
7.9	.3	Crack control	. 50
7.9	.4	Deformations	. 51
7.10	Exe	ecution	.51
7.1	0.1	General	.51
7.1	0.2	Requirements	.51
7.1	0.3	Inspection of materials and products	.51
7.1	0.4	Falsework and formwork	.51
7.1	0.5	Reinforcement and embedded steel	.51
7.1	0.6	Pre-stressing	. 51
7.1	0.7	Precast concrete elements	. 52
7.1	0.8	Geometrical tolerances	. 52
8 Foi	undati	ons – Geotechnical design	. 52
8.1	Gei	neral	. 52
8.2	-	sis of design	-
8.2		General	
8.2	.2	Geotechnical limit states	
8.3		otechnical data	
8.3		General	
8.3		Specific considerations	
8.4		pervision, monitoring and maintenance of construction	
8.5		wity base foundations	
8.5		General	
8.5		Ultimate limit state (ULS)	
8.5		Serviceability limit state (SLS)	
8.6		ed foundations	
8.6		General	
8.6		Pile loads	
8.6		Ultimate limit state	
8.6		Serviceability limit state	
8.7		ck anchored foundations	
8.7		General	
8.7		Types of rock anchor foundation	
8.7		Geotechnical data	
8.7	-	Corrosion protection	
8.7		Anchor inspection and maintenance	
8.7		Post tension tolerances and losses	
8.7		Ultimate limit state	
8.7		Serviceability limit state	
8.7		Robustness check	
	.9 .10	Rock anchor design	
		n, service and maintenance requirements	
9.1		eration, maintenance and monitoring	
9.2		iodic structural inspections	
9.3		bedded steel structural section inspections	
9.4	Rol	t tension maintenance	. / 1

- o -		_	5	
-------	--	---	---	--

9.5	Structural health monitoring	71
	(informative) List of suitable design codes and guidelines for the calculation	
A.1	General	
A.2	Reference documents	
Annex B	(informative) List of material for structural steel	73
B.1	General	73
B.2	Structural steel	
Annex C	(informative) Bolts	74
C.1	General	74
C.2	Reference documents	75
Annex D	(informative) Z-values for structural steel	76
D.1	General	76
D.2	Definition of Z-value according to Eurocode	76
D.3	Reference documents	76
	(informative) Simplified buckling verification for openings in tubular steel	77
	(informative) Fatigue verification	
F.1	General	
F.1 F.2	Specific details	
	(informative) Methods for ring flange verification	
G.1 G.1.	Method for ultimate strength analysis according to Petersen/Seidel 1 Basics	
G.1. G.1.		
G.1.: G.1.:		
G.1. G.2	3 Extension by Tobinaga and Ishihara Method for fatigue strength analysis according to Schmidt/Neuper	
G.2 G.2.		
G.2.		
G.3	Reference documents	
	(informative) Crack control – Guidance on 7.9.3	
H.1	General	
H.2	Crack control based on Eurocode 2	
H.3 H.4	Crack control based on Japanese standards Crack control based on ACI 318	
н.4 Н.5	Reference documents	
•	informative) Finite element analysis for concrete	
I.1	General	
I.2 I.3	Order and type of elements	
1.3 1.4	Constitutive modelling Solution methods	
1.4 1.5	Implicit approach	
1.5 1.6	Steps in conducting of a finite element analysis	
1.0 1.7	Checking results	
1.7 1.8	Reference documents	
-	informative) Tower-foundation anchorage	
J.1		
	General	
J.2	Embedded anchorages	
J.3	Bolted anchorages	95

J.4	Grout	95
J.5	Anchor bolts	95
J.6	Embedded ring	95
J.7	Anchorage load transfer	96
Annex K	(informative) Strut-and-tie section	97
K.1	General	97
K.2	Example of a rock anchor foundation	98
K.3	Reference documents	. 101
	(informative) Guidance on selection of soil modulus and foundation rotational	. 103
L.1	General	. 103
L.2	Soil model	
L.3	Dynamic rotational stiffness	
L.4	Static rotational stiffness	
L.5	Reference documents	
Annex M	(informative) Guidance for rock anchored foundation design	
M.1	General	
M.1 M.2	Corrosion protection	
M.2.	·	
M.2.		
M.2.	Product approval	
M.4	Rock anchor design	
M.5	Grout design	
M.6	Testing and execution	
M.7	Suitability/performance test	
M.8	Acceptance/proof test	
M.9	Supplementary extended creep tests	
M.10	Reference documents	
	(informative) Internal loads – Explanation of internal loads	
	(informative) Seismic load estimation for wind turbine tower and foundation	
	General	
0.2	Vertical ground motion	
0.3	Structure model	
0.4	Soil amplification	
0.5	Time domain simulation	
0.6	Reference documents	
	(informative) Structural damping ratio for the tower of wind turbine	
P.1	General	
P.2	First mode structural damping ratio	
P.3	Second mode structural damping ratio	
P.4	Higher mode damping	
P.5	Reference documents	
Annex Q	(informative) Guidance on partial safety factors for geotechnical limit states	
Q.1	General	
Q.2	Equilibrium	. 120
Q.3	Bearing capacity	. 120
Q.4	Sliding resistance	
Q.5	Overall stability	. 121

IEC 61400-6:2020 © IEC 2020 - 7 -	
Q.6 Reference documents	122
Bibliography	
Figure 1 – Flange notations as an example of an L-flange	31
Figure 2 – Door opening geometry	35
Figure 3 – Flange gaps k in the area of the tower wall	37
Figure 4 – Bolt force as a function of wall force	39
Figure 5 – S-N curve for detail category 36	40
Figure 6 – Thermal effects around tower cross-section	44
Figure 7 – Illustration of rock anchor length	70
Figure E.1 – Circumferentially edge-stiffened opening	78
Figure E.2 – Definition of W_s and t_s according to JSCE	79
Figure G.1 – Simplification of system to segment model	
Figure G.2 – Locations of plastic hinges for different failure modes	82
Figure G.3 – Geometric parameters	83
Figure G.4 – Modification factor λ for different α [1]	85
Figure G.5 – Tri-linear approximation of the non-linear relation between bolt force and tension force of the bolted connection	86
Figure K.1 – Example for the design of a deep beam using the strut-and-tie method	97
Figure K.2 – Simple shapes of strut-and-tie models	97
Figure K.3 – Three examples for carrying load in a deep beam	98
Figure K.4 – Strut-and-tie models for a rock-anchor foundation	.101
Figure K.5 – Top tie reinforcement in a rock-anchor foundation	101
Figure L.1 – Example stress-strain relationship for soil	103
Figure L.2 – Loading and unloading behaviour of soil	104
Figure L.3 – Variation of shear modulus with soil strain	105
Figure L.4 – Reduction in rotational stiffness due to load eccentricity	106
Figure L.5 – Illustrative example of reduction in foundation rotational stiffness due to increasing load eccentricity	.107
Figure M.1 – Section through rock and anchor	.108
Figure M.2 – Typical anchor configuration with corrosion protection	
Figure N.1 – Representation of internal loads	
Figure O.1 – Structure model for response spectrum method	
Figure P.1 – First mode damping ratio for the steel tower of wind turbine	.118
Table 1 – Flange tolerances	37
Table 2 – Summary of geotechnical limit states	53
Table B.1 – National and regional steel standards and types	73
Table C.1 – Comparison of bolt material in ISO 898-1, JIS B1186 and ASTM A490M-12	74
Table E.1 – Coefficients for Formula (E.3)	78
Table H.1 – Limit value of crack width based on Japanese standards ^[1]	89
Table P.1 – Damping coefficients	.117
Table Q.1 – Minimum partial safety factors for the equilibrium limit state (European	
and North American practice)	120