BS EN 13001-3-1:2012+A2:2018 EN 13001-3-1:2012+A2:2018 (E)

Ite m	Type of	stiffness	Illustration	Allowable imperfection f
1	Unstiffene	General		$f = \frac{l_{m}}{250}$ $l_{m} = a, where \ a \le 2b$ $l_{m} = 2b, where \ a > 2b$
2	d plates	Subject to transverse compressio n		$f = \frac{l_{m}}{250}$ $l_{m} = b, where \ b \le 2a$ $l_{m} = 2a, where \ b > 2a$
3	Longitudir in plat longitudin	al stiffeners tes with al stiffening		$f = \frac{a}{400}$
4	Transverse plates with and transve	stiffeners in longitudinal rse stiffening		$f = \frac{a}{400}$ $f = \frac{b}{400}$
f s	hall be measu	ured in the per	pendicular plane.	
l _m i	s the gauge le	ength.		

Гаble 14 —	Maximum	allowable	imperfection	f for plates	and stiffeners

Figure 10 shows a plate field with dimensions a and b (side ratio $\alpha = a/b$). It is subjected to longitudinal stress varying between σ_x (maximum compressive stress) and $\psi \times \sigma_x$ along its end edges, coexistent shear stress τ and with coexistent transverse stress σ_y , (e.g. from wheel load, see $\Delta C.3 \langle \Delta z \rangle$) applied on one side only.

Figure 10 — Stresses applied to plate field

8.3.2 Limit design stress with respect to longitudinal stress σ_x

The limit design compressive stress $f_{b,Rd,x}$ is calculated from:

$$f_{\rm b,Rd,x} = \frac{\kappa_x \times f_y}{\gamma_{\rm m}} \tag{47}$$

where

 κ_x is a reduction factor according to Equation (48);

 f_y is the yield stress of the plate material.

A The reduction factor κ_x is given by:

$$\kappa_{\rm X} = 1,05 \qquad \text{for} \qquad \lambda_{\rm X} \le 0,635$$

$$\kappa_{\rm X} = 1,474 - 0,677 \times \lambda_{\rm X} \qquad \text{for} \qquad 0,635 < \lambda_{\rm X} < 1,26 \qquad (48)$$

$$\kappa_{\rm x} = \frac{1}{\lambda_{\rm x}^2} \qquad \text{for} \qquad \lambda_{\rm X} \ge 1,26$$

(A₂

where

 λ_x is a non-dimensional plate slenderness according to Equation (49); The non-dimensional plate slenderness λ_x is given by:

$$\lambda_x = \sqrt{\frac{f_y}{k_{\sigma x} \times \sigma_e}} \tag{49}$$

where

 $\sigma_{\rm e}$ is a reference stress according to Equation (50);

 $k_{\sigma x}$ is a buckling factor given in Table 15.

BS EN 13001-3-1:2012+A2:2018 EN 13001-3-1:2012+A2:2018 (E)

The reference stress σ_e is given by:

$$\sigma_{\rm e} = \frac{\pi^2 \times E}{12 \times (1 - \nu^2)} \times \left(\frac{t}{b}\right)^2 \tag{50}$$

where

- *E* is the modulus of elasticity of the plate;
- *v* is the Poisson's ratio of the plate (v = 0,3 for steel);
- *t* is the plate thickness;
- *b* is the width of the plate field.

The buckling factor $k_{\sigma x}$ depends on the edge stress ratio ψ , the side ratio α and the edge support conditions of the plate field. Table 15 gives values for the buckling factor $k_{\sigma x}$ for plate fields supported along both transverse and longitudinal edges (Case 1) and plate fields supported along both transverse edges but only along one longitudinal edge (Case 2).

		Case 1	Ca	se 2
		Supported along all four edges	Supported along both loade one longitu	d (end) edges and along only udinal edge.
1	Type of support			
2	Stress distribution	$\sigma \qquad \qquad$	$\sigma \qquad \qquad$	ψσσσ
3	<i>ψ</i> = 1	4	0,	43
4	1 > ψ > 0	$\frac{8,2}{\psi+1,05}$	$\frac{0,578}{\psi+0,34}$	$0,57 - 0,21\psi + 0,07\psi^2$
5	$\psi = 0$	7,81	1,70	0,57
6	$0 > \psi > -1$	$7,81-6,29\psi+9,78\psi^2$	$1,70 - 5\psi + 17,1\psi^2$	$0,57 - 0,21\psi + 0,07\psi^2$
7	<i>ψ</i> = −1	23,9	23,8	0,85
8	$\psi < -1$	5.98 x (1-ψ) ²	23,8	$0,57 - 0,21\psi + 0,07\psi^2$

Table 15 — Buckling factor $k_{\sigma x}$

NOTE For Case 1 the values and equations for buckling factors k_{α} given in Table 15 for plate fields supported along all four edges can give overly conservative results for plate fields (see figure 10 for α) with α < 1,0 for rows 3 to 6 and α < 0,66 for row 7. For Case 2 the results can be overly conservative for plate fields with α < 2,0. Further information regarding alternative values for short plate fields can be found in additional references, see Bibliography.

8.3.3 Limit design stress with respect to transverse stress σ_v

Where the transverse stresses are due to a moving load, e.g. travelling wheel load on a bridge girder, the use of methods utilizing post buckling mentioned in 8.3.1 is not allowed.

The limit design transversal normal stress shall be calculated from:

$$f_{b,Rd,y} = \frac{\kappa_y f_y}{\gamma_m}$$
(51)

 κ_y is a reduction factor according to Equation (52);

BS EN 13001-3-1:2012+A2:2018 EN 13001-3-1:2012+A2:2018 (E)

 f_{v} is the minimum yield stress of the plate material.

▲ The reduction factor κ_y is given by:

$$\kappa_{y} = 1,05 \qquad \text{for} \qquad \lambda_{y} \le 0,635$$

$$\kappa_{y} = 1,474 - 0,677 \times \lambda_{y} \qquad \text{for} \qquad 0,635 < \lambda_{y} < 1,26 \qquad (52)$$

$$\kappa_{y} = \frac{1}{\lambda_{y}^{2}} \qquad \text{for} \qquad \lambda_{y} \ge 1,26$$

(A₂

The non-dimensional plate slenderness λ_y is given by:

$$\lambda_{y} = \sqrt{\frac{f_{y}}{k_{\sigma y} \times \sigma_{e} \times \frac{a}{c}}}$$
(53)

where

- $\sigma_{\rm e}$ is a reference stress according to Equation (50);
- $k_{\sigma y}$ is a buckling factor determined using figure 11;
- *a* is the plate field length
- *c* is the width over which the transverse load is distributed (c = 0 corresponds to a theoretical point load in Figure 11, see $\boxed{\mathbb{A}_2}$ C.3 $\boxed{\mathbb{A}_2}$)

Figure 11 — Buckling factor $k_{\sigma y}$

8.3.4 Limit design stress with respect to shear stress τ

The limit design buckling shear stress is calculated from:

$$f_{b,Rd,\tau} = \frac{\kappa_{\tau} f_y}{\sqrt{3} \gamma_m}$$
(54)

where

 κ_{τ} is a reduction factor given by:

 $\kappa_{\tau} = 1$ for $\lambda_{\tau} < 0.84$

$$\kappa_{\tau} = \frac{0.84}{\lambda_{\tau}} \qquad \qquad \text{for } \lambda_{\tau} \ge 0.84 \tag{55}$$

where

$$\lambda_{\tau} = \sqrt{\frac{f_{y}}{k_{\tau} \cdot \sigma_{e} \cdot \sqrt{3}}}$$
(56)

- $f_{\slash w}$ is the minimum yield strength of the plate material
- $\sigma_{\rm e}$ is a reference stress according to Equation (50)
- k_{τ} is a buckling factor calculated (for a plate field supported along all four edges) using equations given in table 16.

Table 16 — Buckling factor k_{τ}

α	$k_{ au}$
α > 1	$k_{\tau} = 5,34 + \frac{4}{\alpha^2}$
<i>α</i> ≤ 1	$k_{\tau} = 4 + \frac{5.34}{\alpha^2}$

8.4 Execution of the proof

8.4.1 Members loaded in compression

For the member under consideration, it shall be proven that:

$$N_{\rm Sd} \le N_{\rm Rd}$$
 (57)

where

 $N_{\rm Sd}$ is the design value of the compressive force;

 $N_{\rm Rd}$ is the limit design compressive force according to 8.2.2.

8.4.2 Plate fields

8.4.2.1 Plate fields subjected to longitudinal or transverse compressive stress

For the plate field under consideration, it shall be proven that:

$$|\sigma_{\mathrm{Sd},\mathrm{x}}| \le f_{\mathrm{b},\mathrm{Rd},\mathrm{x}}$$
 and $|\sigma_{\mathrm{Sd},\mathrm{y}}| \le f_{\mathrm{b},\mathrm{Rd},\mathrm{y}}$ (58)

where

 $\sigma_{\text{Sd},x}, \sigma_{\text{Sd},y}$ are the design values of the compressive stresses σ_x or σ_y ;

 $f_{b,Rd,x}$, $f_{b,Rd,y}$ are the limit design compressive stresses in accordance with 8.3.2 and 8.3.3.

8.4.2.2 Plate fields subjected to shear stress

For the plate field under consideration, it shall be proven that:

$$\tau_{\mathrm{Sd}} \leq f_{\mathrm{b,Rd},\tau}$$

(59)

where

 τ_{Sd} is the design value of the shear stress;

 $f_{\mathsf{b},\mathsf{Rd},\tau}$ is the limit design shear stress in accordance with 8.3.4.

8.4.2.3 Plate fields subjected to coexistent normal and shear stresses

For the plate field subjected to coexistent normal (longitudinal and/or transverse) and shear stresses, apart from a separate proof carried out for each stress component in accordance with 8.4.2.1 and 8.4.2.2, it shall be additionally proven that:

$$\left(\frac{\left|\sigma_{Sd,x}\right|}{f_{b,Rd,x}}\right)^{e_{1}} + \left(\frac{\left|\sigma_{Sd,y}\right|}{f_{b,Rd,y}}\right)^{e_{2}} - V \times \left(\frac{\left|\sigma_{Sd,x} \cdot \sigma_{Sd,y}\right|}{f_{b,Rd,x} \cdot f_{b,Rd,y}}\right) + \left(\frac{\left|\tau_{Sd}\right|}{f_{b,Rd,\tau}}\right)^{e_{3}} \le 1$$

$$(60)$$

where

 $e_1 = 1 + \kappa_x^4 \tag{61}$

$$e_2 = 1 + \kappa_y^4 \tag{62}$$

$$e_3 = 1 + \kappa_x \times \kappa_y \times \kappa_\tau^2 \tag{63}$$

and with κ_x calculated in accordance with 8.3.2, κ_v in accordance with 8.3.3 and κ_τ in accordance with 8.3.4.

 $V = (\kappa_x \times \kappa_y)^6 \qquad \text{for } \sigma_{Sd,x} \times \sigma_{Sd,y} \ge 0 \tag{64}$

$$V = -1 \qquad \qquad \text{for } \sigma_{Sd,x} \times \sigma_{Sd,y} < 0$$

Annex A

(informative)

Limit design shear force *F*_{v,Rd} per bolt and per shear plane for multiple shear plane connections

Table A.1 and table A.2 give limit design shear forces in relation to the shank diameter and the bolt material and are independent of the detailed design of the bolt.

$\label{eq:radius} Table A.1 - Limit design shear force \ F_{v,Rd} \ per \ fit \ bolt \ and \ per \ shear \ plane \ for \ multiple \ shear \ plane \ connections$

	Shank			<i>F</i> v,Rd [k	N]	
Fit bolt	diameter		Fi	t bolt ma	aterial	
	[mm]			for $\gamma_{\rm Rb}$ =	1,1	
		4.6	5.6	8.8	10.9	12.9
M12	13	16,7	20,9	44,6	62,8	75,4
M16	17	28,6	35,7	76,2	107,2	128,6
M20	21	43,5	54,4	116,2	163,2	196,1
M22	23	52,2	65,3	139,4	196,0	235,2
M24	25	61,8	77,3	164,9	231,9	278,3
M27	28	77,6	97,0	206,9	291,0	349,2
M30	31	95,1	111,8	253,6	356,6	428,0

Table A.2 — Limit design shear force $F_{v,Rd}$ in the shank per standard bolt and per shear plane for multiple shear plane connections

				$F_{v,Rd}[\mathrm{kN}]$]	
Bolt	Shank diameter [mm]		Bc fo	olt mater or $\gamma_{Rb} = 1$	ial ,1	
		4.6	5.6	8.8	10.9	12.9
M12	12	14,2	17,8	37,9	53,4	64,1
M16	16	25,3	31,6	67,5	94,9	113,9
M20	20	39,5	49,4	105,5	148,4	178,0
M22	22	47,8	59,8	127,6	179,5	215,4
M24	24	56,9	71,2	151,9	213,6	256,4
M27	27	72,1	90,1	192,3	270,4	324,5
M30	30	89,0	111,3	237,4	333,9	400,6

Annex B (informative)

Preloaded bolts

Bolt sizes in Tables B.1 and B.2 refer to standard series of ISO metric thread and pitch in accordance with ISO 262.

Bolt size		Bolt material	
	8.8	10.9	12.9
M12	86	122	145
M14	136	190	230
M16	210	300	360
M18	290	410	495
M20	410	590	710
M22	560	790	950
M24	710	1 000	1 200
M27	1 040	1 460	1 750
M30	1 410	2 000	2 400
M33	1 910	2 700	3 250
M36	2 460	3 500	4 200
A friction coefficient μ = torques. For other value adjusted accordingly.	0,14 is assumed in the solution coefficient of the friction coefficient coefficient coefficient coefficient of the solution coefficient of the solution coefficient of the solution of the sol	he calculations of the j efficient the tightenin	preceding tightening g torques should be

Table B.1 — Tightening torques in Nm to achieve the maximum allowable preload level $0,7 \times F_{y}$

EN 13001-3-1:2012+A2:2018 (E)

Table B.2 — Limit design slip force $F_{S,Rd}$ per bolt and per friction interface using a design preloading force $F_{p,d} = 0.7 \times f_{yb} \times A_s$

	Desig forc Bol	n preloa :e F _{p,d} in t materi	ading kN ial					Limit de Y ^m	esign sli = 1,1 an	p force l 1d Y _{ss} = 1	F _{s,Rd} in kľ l ,14	7			
							ľ		Bolt n	naterial					
					8.6	8			1(.0			12	6.9	
					Slip fac	ctor :			Slip fé	actor :			Slip fa	actor :	
8.8 10.9	10.9		12.9	0.50	0.40	0.30	0.20	0.50	0.40	0.30	0.20	0.50	0.40	0.30	0.20
37,8 53,1	53,1		63,7	15,1	12,0	9,0	6,0	21,2	16,9	12,7	8,5	25,4	20,3	15,2	10,2
51,5 72,5	72,5		86,9	20,5	16,4	12,3	8,2	28,9	23,1	17,3	11,6	34,7	27,7	20,8	13,9
70,3 98,9	98,9		119	28,0	22,4	16,8	11,2	39,4	31,6	23,7	15,8	47,3	37,9	28,4	18,9
86,0 121	121		145	34,3	27,4	20,6	13,7	48,2	38,6	28,9	19,3	57,9	46,3	34,7	23,2
110 154	154		185	43,8	35,0	26,3	17,5	61,5	49,2	36,9	24,6	73,9	59,1	44,3	29,5
136 191	191		229	54,1	43,3	32,5	21,6	76,1	60,9	45,7	30,4	91,3	73,1	54,8	36,5
158 222	222		267	63,1	50,4	37,8	25,2	88,7	70,9	53,2	35,5	106	85,1	63,8	42,6
206 289	289		347	82,0	65,6	49,2	32,8	115	92,2	69,2	46,1	138	111	83,0	55,3
251 353	353		424	100	80,2	60,1	40,1	141	113	84,6	56,4	169	135	101	67,6
311 437	437		525	124	99,2	74,4	49,6	174	139	105	69,7	209	167	126	83,7
366 515	515		618	146	117	87,6	58,4	205	164	123	82,1	246	197	148	98,5