

Designation: D6673 – 10

Standard Practice for Sewn Products Pattern Data Interchange—Data Format¹

This standard is issued under the fixed designation D6673; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This standard is designed to facilitate communication between CAD/CAM systems that represent two-dimensional flat pattern pieces. This standard also provides conventions for representing related information such as grade rule tables. This standard is not intended to represent the relationships between pattern pieces or the correspondence between 2D or 3D sewn product pattern piece geometries.

1.2 The file format for the pattern data exchange file defined by this standard (Practice D6673) complies with the Drawing Interchange File (DXF) format. Autodesk, Inc. developed the DXF format for transferring data between their AutoCAD(r) product and other software applications. This standard documents the manner in which pattern data should be represented within the DXF format. Users of this standard should have Autodesk, Inc.'s documentation on Drawing Interchange Files, found in the AutoCAD Reference Manual, in order to assure compatibility to all DXF format specifications. The AutoCAD Version 13 DXF specification is to be used. The file format for the grade rule table exchange file is an ASCII text file.

1.3 *This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.*

2. Referenced Documents

2.1 ASTM Standards:

[D6963 Terminology Relating to Sewn Products Automation](#)

2.2 ANSI/AAMA Standard:

[ANSI/AAMA-292A](#)

3. Terminology

3.1 *Definitions of Terms Specific to This Standard:* For all terminology related to Sewn Products Automation see Terminology [D6963](#).

¹ This practice is under the jurisdiction of ASTM Committee [D13](#) on Textiles and is the direct responsibility of Subcommittee [D13.66](#) on Sewn Product Automation.

Current edition approved Jan. 1, 2010. Published March 2010. Originally approved in 2001. Last previous edition approved in 2004 as D6673-04. DOI: 10.1520/D6673-10.

3.1.1 *alternate grade reference line, n*—an optional internal line whose orientation is used for the x axis of a grade rule.

3.1.1.1 *Discussion*—The application of a grade rule will be oriented to the grade reference line unless an alternate grade reference line is specified. (See grade reference line.)

3.1.2 *base size, n*—the digitized or created size of a style.

3.1.2.1 *Discussion*—Base size is a synonym of sample size. (See sample size.)

3.1.3 *block, n*—a DXF keyword that is used to identify a section of the file that has information about one object.

3.1.3.1 *Discussion*—a block keyword should be used to identify the start of information for a pattern piece and the section should be ended with an endblk keyword.

3.1.4 *internal cut outs, n*—lines, part of a pattern piece, not part of the piece boundary, which are cut during the cutting process.

3.1.5 *internal lines, n*—lines, part of a pattern piece, not a part of the piece boundary, which are not cut.

3.1.5.1 *Discussion*—Internal lines are not cut but may be drawn during the cutting process.

3.1.6 *sew lines, n*—internal lines that indicate where stitching of pattern pieces is to be done.

3.2 Definitions of Terms Specific to This Standard:

3.2.1 *entities, n*—a DXF keyword that is used to identify the section of the DXF file describing file identification information.

3.2.1.1 *Discussion*—Style system text must be placed in the entities section of the DXF file.

3.2.2 *system text, n*—information related to either the style and/or pattern pieces in the DXF file.

3.2.3 *system text identifier, n*—keywords used in DXF file to construct syntax and associate values with specific system text.

3.2.4 *validation vertex, n*—vertex that is inserted into a polyline in order to guarantee that the resulting polyline represents the original curve in the exporting CAD systems within a given curve tolerance

4. Summary of Practice

4.1 *Pattern Piece Transfer File Format*—The file format defined by this standard complies with the DXF format. A DXF file is a specially formatted ASCII text file. It consists of an optional header as well as tables, blocks and entities sections.

The tables section allows for user-defined functional layering of a CAD drawing. Using this provision, this standard organizes the CAD data representing a pattern piece into a number of layers.

This standard currently can incorporate the following pattern piece information:

annotation (plotted) text;
alternate grade reference line(s);
cut line;
drill holes;
graded nests;
grade reference line;
grade rule identifiers;
grade rule table name;
grainline;
internal cutouts;
internal lines;
mirror line;
notches;
piece boundary, including turn points and curve points;
plaid reference lines;
sew lines;
stripe reference lines;
style information: style name; creation date and time, author, sample size, grade rule table name, units, standard version.
piece information: piece name, quantity, category, rotation, flip, tilt, fold.

4.2 Header—An optional header may precede the information in the file defined by this standard. However, because many CAD programs on the market today are unable to generate or accept a header, it is recommended that the use of the optional header be minimized.

4.3 Layers—The ASTM D13 proposed standard utilizes a layered file format. Information contained in the file defined by this standard is separated into distinct layers, each layer providing a specific type of information. Layer numbers are used to identify each layer and indicate which information is found in the layer.

Numbers are used, rather than text, since many programs that support the DXF format are unable to generate or accept non-numeric layer designations. Layer 1 is required. Information about each layer is described in 4.3.1 through 4.3.15.

The following four restrictions are placed on layer information:

(1) On Layer 1 the piece boundary line will be represented as one or more polylines that form a closed polygon.

(2) Layer 2 will contain all the turn points in the piece as found on layers 1, 8, 11, and 14.

(3) Layer 3 will contain all the curve points in the piece as found on layers 1, 8, 11, and 14.

(4) Layers 5, 6, 7, 9, 10 and 13 cannot contain polylines.

The following list for layer numbers are provided:

Layer 1	piece boundary
Layer 2	turn points
Layer 3	curve points
Layer 4	V-notch and slit notch
Layer 5	grade reference and alternate grade reference line(s)
Layer 6	mirror line
Layer 7	grainline
Layer 8	internal line(s)
Layer 9	stripe reference line(s)
Layer 10	plaid reference line(s)
Layer 11	internal cutout(s)
Layer 12	intentionally left blank
Layer 13	drill holes

Layer 14	sew line(s)
Layer 15	annotation text
Layer 80	T-notch
Layer 81	castle notch
Layer 82	check notch
Layer 83	U-notch
Layer 84	piece boundary quality validation curves
Layer 85	internal lines quality validation curves
Layer 86	internal cutouts quality validation curves
Layer 87	sew lines quality validation curves

4.3.1 Layer 1—Piece Boundary Layer—The piece boundary layer contains the boundary lines for each piece in the file. A separate BLOCK is used for each piece. Within each BLOCK are one or more polylines that constitute the piece boundary. Each polyline within the BLOCK corresponds to an individual pattern element.

The Piece Boundary BLOCK includes Turn Points, Curve Points, Notch Base Points, Grade Points and Mirror Line Points. The piece boundary is a continuous, closed line, with points ordered in either the clockwise or counter clockwise direction. This layer is required.

DXF example of a piece boundary polyline containing vectorized curves:

```

0
POLYLINE
8
1
66
1
0
VERTEX
8
1
10
450.369
20
338.697
0
VERTEX
8
1
10
459.322
20
338.316
0
VERTEX
8
1
10
457.195
20
327.486
0
SEQEND

```

layer 1—boundary line
closed-polyline flag
layer 1—boundary line
X coordinate
Y coordinate
layer 1—boundary line
X coordinate
Y coordinate
layer 1—boundary line
X coordinate
Y coordinate
layer 1—boundary line
X coordinate
Y coordinate

DXF example of a piece boundary polyline containing circular-interpolated curves:

```

0
POLYLINE
-8
1
66
1
0
VERTEX
8
1
10
0.0

```

layer 1—boundary line
layer 1—boundary line
X coordinate

```

20
0.0
42
-0.014743
0
VERTEX
8
1
10
-45.900000
20
-53.800000
42
-0.005465
0
VERTEX
8
1
10
-34.200000
20
-38.600000
42
-0.018913
0
VERTEX
8
1
10
-19.100000
20
-20.200000
0
SEQEND

```

Y coordinate
 bulge value
 layer 1-boundary line
 X coordinate
 Y coordinate
 bulge value
 X coordinate
 Y coordinate
 bulge value
 layer 1-boundary line
 X coordinate
 Y coordinate

Style System
 Text
 grade rule table
 units
 Standard Version
 curve tolerance

Correct Syntax (Identifier:<Value>)
 Grade Rule Table:<string>
 Units:<METRIC | ENGLISH>
 ASTM/D13Proposal 1 Version: XX
 Curve Tolerance:<float>

If the style being transferred has no sample size or grade rule table (as is the case in non-apparel sewn products), then the values of these system text identifiers can be left blank but the system text identifier is still required.

METRIC means that all values are in decimal millimeters to two places (e.g. 12.27) and ENGLISH means that all values are in decimal inches to four places (e.g. 4.8751).

The appropriate format for Creation Date is <dd-mm-yyyy> and for Creation Time it is <hh-mm>.

The curve tolerance system text must exist and only exists when Quality Validation Curves are used in the file. The tolerance value is represented using the units that have been defined. The curve tolerance is defined mathematically as the maximum projected distance of a vertex from a polyline on a Quality Validation Layer to the associated original curve (as calculated by the exporting system). It should be used by a receiving/importing system to determine accuracy of the generated curve (based on the turn points on layer 2 and the curve points on layer 3) to the original curve. Alternatively, the quality validation curve can be used directly to regenerate the original curve in polyline representation.

DXF example of system text:

```

TEXT
8
1
72
3
10
0.000
20
0.000
11
0.004
21
0.000
40
0.394
50
0.000
1
Style Name: SHIRT
0

```

4.3.1.2 *Piece System Text*—This is system text that appears within each piece BLOCK:

Piece System Text
 Piece Name
 Quantity
 Rotation
 Flip
 Tilt
 Fold
 Material

Correct Syntax (Identifier:<Value>)
 Piece Name:<string>
 Quantity:<R,L>
 Rotation:<0..360>
 Flip:<X|Y>
 Tilt:</-0..90>
 Fold:<Y|N>
 Material:<string>

Only Piece Name is required.

Quantity will be given as R, L where R indicates the number of right pieces required and L indicates the number of left pieces required. (Example 3,2)

Rotation is given in step increment degrees. It is assumed that the piece may rotate in this step increment up to 360 degrees.

Style System	Correct Syntax (Identifier:<Value>)
Text	
style name	Style Name:<string>
creation date	Creation Date:<string>
creation time	Creation Time:<string>
author	Author:<vendor name>;<application>;<release #>
sample size	Sample Size:<string>

Flip is defined as X (assuming flipping the piece about the horizontal axis) or Y (assuming flipping the piece about the vertical axis).

Tilt is an integer value that defines the maximum tilt in degrees that a piece may move. It is further assumed that the piece may be tilted positively or negatively up to the maximum defined tilt.

Fold indicates that the piece may be placed on the fold of tubular fabric.

Material is a string giving the name of the material in which the piece is cut.

4.3.1.3 Piece Arrangement—When multiple pieces are contained within a single file defined by this standard each piece shall be defined within a separate BLOCK. The BLOCK description must not contain any INSERT operations of other blocks.

Although multiple pieces are allowed within the file only a single style may be represented.

4.3.1.4 Grade Rule Identifier Text—Grading information is identified by text within the sample size block on layers containing graded points or notches. Grade information contained in the text entity is associated with a point or vertex entity at the same XY location. The format for this information is as follows:

<string1>, <string2>

where # is required and followed by <string1> which is the grade rule identifier, <string2> is optional and can be used as the alternate grade reference identifier.

Any point or notch that will not be moved through grading must have a grade rule identifier associated with a zero growth grade rule.

The following layers can not include grade rules:

- 2 (turn point)
- 3 (curve point)
- 6 (mirror line)
- 84 (boundary quality validation curves)
- 85 (internal lines quality validation curves)
- 86 (internal cutouts quality validation curves)
- 87 (sew lines quality validation curves)

The grade rules associated with grade rule identifier may optionally be defined in a separate file called a Grade Rule Table File.

4.3.1.5 Graded Nests—A graded nest can be used to transfer grading growth information for pieces. Multiple blocks within a DXF file with the same piece name will indicate a graded nest.

Each graded size of a piece must be defined in a separate block with the size name of the piece included in the piece system text. The order of the BLOCKS represents the sequence of the sizes. Each block must contain a grade reference line. The growth information can be determined by stacking the pieces so the grade reference lines are coincident.

Only the sample size must have all of the piece system text for the piece. All points and ATTDEF entities must be repeated in each block (i.e. each size) of the nest. Points and ATTDEF entities for each graded size are given in the same order, quantity and layer as the sample size.

Blocks in the DXF file can be placed on top of each other (i.e. to show stacks of graded patterns) or placed separately in their own coordinate space. The receiving system should be able to interpret the base pattern and appropriate delta grading regardless of which representation is used.

Sample sizes are exported the same as nongraded pieces. Because the points are the same on all sizes, only the sample size needs all the applicable layers. The following layers should not appear within graded sizes:

Layer 2 Turn points
 Layer 3 Curve points
 Layer 4 Slit/V-notches
 Layer 5 Alternate grade reference lines
 Layer 80 T-notches
 Layer 81 Castle notches
 Layer 82 Check notches
 Layer 83 U-notch

DXF example of a graded boundary point:

```
0
TEXT
8
1
10
387.900000
20
-38.100000
40
0.100000
1
# 10
```

layer 1—
boundary line

X coordinate

Y coordinate

text height

grade rule
identifier

4.3.1.5.1 Graded Nest Piece System Text—The system text for each graded piece within a graded nest must contain the piece name and size. Quantity may also be included.

Piece System Text	Correct Syntax
Piece Name	Piece Name:<string>
Size Name	Size Name:<string>
Quantity	Quantity:<R,L>

For the sample size, the size name system text specifies the actual Sample Size Name. The piece name for each graded size of a piece must be the same as the piece name for the sample size.

4.3.1.6 Curve Quality Validation for Graded Piece Boundaries—Quality validation curves are defined by validation verices of a polyline on a Quality Validation Layer to its associated layer 8. When grade rules are applied to pieces with a given sample size, the curve quality of the resulting graded piece boundaries in the importing system cannot be validated to those of the exporting system. This is because this standard does not define a common curve interpolation algorithm. Under such circumstances, the quality of the graded piece polylines can only be validated using a graded nest. A graded nest will ensure that the piece polylines of all sizes are defined in the corresponding Quality Validation Layers. The following Quality Validation Layers are associated with the corresponding polyline layers:

Layer 84	contains the Quality Validation Curve(s) for layer 1 polyline(s) (boundary)
Layer 85	contains the Quality Validation Curve(s) for layer 8 polyline(s) (internal lines)
Layer 86	contains the Quality Validation Curve(s) for layer 11 polyline(s) (internal counts)
Layer 87	contains the Quality Validation Curve(s) for layer 14 polyline(s) (sew lines)