Betz, C.E. *Principles of Magnetic Particle Testing*. Chicago, IL: Magnaflux Corp. 2000.

Mix, P.E., *Introduction to Nondestructive Testing: A Training Guide*, second edition. New York: John Wiley & Sons. 2005.

Moore, D.G., tech. ed., P.O. Moore, ed. *Nondestructive Testing Handbook*, third edition: Volume 8, *Magnetic Particle Testing*. Columbus, OH: The American Society for Nondestructive Testing, Inc. 2008.* *Nondestructive Evaluation and Quality Control: ASM Handbook*, Volume 17. Metals Park, OH: ASM International. 1989.*

Smith, G. *Magnetic Particle Testing Classroom Training Book* (PTP Series). Columbus, OH: The American Society for Nondestructive Testing, Inc. 2015.*

Welding Handbook, Volume 1. Miami, FL: American Welding Society. Latest edition.

* Available from the American Society for Nondestructive Testing, Inc., Columbus, OH.

MFL Magnetic Flux Leakage Testing Topical Outlines

Magnetic Flux Leakage Testing Level I Topical Outline

1.0 Magnetic Flux Leakage Testing

- 1.1 Brief history of testing
- 1.2 Basic principles of testing

2.0 Principles of Magnetic Fields

- 2.1 Magnetic fields characteristics
- 2.2 Flux line characteristics

3.0 Magnetism by Means of Electric Current

- 3.1 Field around a conductor
- 3.2 Right-hand rule
- 3.3 Field in ferromagnetic conductors

4.0 Indirect Magnetization

- 4.1 Circular fields
- 4.2 Longitudinal fields
- 4.3 Transverse fields

5.0 Magnetization Variables

- 5.1 Type of magnetizing current
- 5.2 Alloy magnetic properties
 - 5.2.1 Hysteresis curve
 - 5.2.2 Permeability
 - 5.2.3 Factors affecting permeability

6.0 Flux Leakage

- 6.1 Flux leakage theory
- 6.2 Normal component of flux leakage

7.0 Search Coils

- 7.1 Rate of change in the normal component of flux leakage
- 7.2 Faraday's law (rate of change versus induced voltage)
- 7.3 Factors that affect the voltage induced in a search coil

8.0 Hall Effect Search Units

- 8.1 Hall effect principles
- 8.2 Factors that affect the output voltage of Hall effect element

9.0 Signal Processing

- 9.1 Rectification
- 9.2 Filtering

10.0 Readout Mechanism

10.1 Displays10.2 Strip-chart recorder10.3 Computerized data acquisition

Magnetic Flux Leakage Testing Level II Topical Outline

Magnetic Flux Leakage Evaluation Course

1.0 Review of Magnetic Theory

- 1.1 Flux leakage theory
- 1.2 Types of flux leakage sensing probes

2.0 Factors that Affect Flux Leakage Fields

- 2.1 Degree of magnetization
- 2.2 Defect geometry
- 2.3 Defect location
- 2.4 Defect orientation
- 2.5 Distance between adjacent defects

3.0 Signal-to-Noise Ratio

- 3.1 Definition
- 3.2 Relationship to flux leakage testing
- 3.3 Methods of improving signal-to-noise ratio
- 4.0 Selection of Method of Magnetization for Flux Leakage Testing
 - 4.1 Magnetization characteristics for various magnetic materials
 - 4.2 Magnetization by means of electric fields
 - 4.2.1 Circular field
 - 4.2.2 Longitudinal field
 - 4.2.3 Value of flux density
 - 4.3 Magnetization by means of permanent magnets4.3.1 Permanent magnet relationship and theory4.3.2 Permanent magnet materials
 - 4.4 Selection of proper magnetization method

5.0 Coupling

5.1 "Lift-off" in flux leakage testing

6.0 Signal Processing Considerations

- 6.1 Amplification
- 6.2 Filtering

7.0 Applications

- 7.1 General
 - 7.1.1 Flaw detection
 - 7.1.2 Sorting for properties related to permeability
 - 7.1.3 Measurement of magnetic-characteristic values
- 7.2 Specific
 - 7.2.1 Tank floor and side inspection
 - 7.2.2 Wire rope inspection
 - 7.2.3 Tube inspection
 - 7.2.4 "Intelligent" pigs
 - 7.2.5 Bar inspection

8.0 User Standards and Operating Procedures

- 8.1 Explanation of standards and specifications used in magnetic flux leakage testing
- 8.2 Explanation of operating procedures used in magnetic flux leakage testing

Magnetic Flux Leakage Testing Level III Topical Outline

1.0 Principles/Theory

- 1.1 Flux leakage theory
- 1.2 Förster and other theories
- 1.3 Finite element methods
- 1.4 DC flux leakage/AC flux leakage

2.0 Equipment/Materials

- 2.1 Detectors
 - 2.1.1 Advantages/limitations
- 2.2 Coils
 - 2.2.1 Advantages/limitations
- 2.3 Factors affecting choice of sensing elements
 - 2.3.1 Type of part to be inspected
 - 2.3.2 Type of discontinuity to be detected
 - 2.3.3 Speed of testing required
 - 2.3.4 Amount of testing required
 - 2.3.5 Probable location of discontinuity
 - 2.3.6 Applications other than discontinuity detection
- 2.4 Read out selection
 - 2.4.1 Oscilloscope and other monitor displays
 - 2.4.2 Alarm, lights, etc.
 - 2.4.3 Marking system
 - 2.4.4 Sorting gates and tables
 - 2.4.5 Cutoff saw or shears
 - 2.4.6 Automation and feedback
 - 2.4.7 Strip-chart recorder
 - 2.4.8 Computerized data acquisition
- 2.5 Instrument design considerations
 - 2.5.1 Amplification
 - 2.5.2 Filtering
 - 2.5.3 Sensor configuration

3.0 Techniques/Standardization

- 3.1 Consideration affecting choice of test
 - 3.1.1 Signal-to-noise ratio
 - 3.1.2 Response speed
 - 3.1.3 Skin effect

- 3.2 Coupling
 - 3.2.1 Fill factor
 - 3.2.2 Lift-off
- 3.3 Field strength
 - 3.3.1 Permeability changes3.3.2 Saturation
- 3.4 Comparison of techniques
- 3.5 Standardization
 - 3.5.1 Techniques
 - 3.5.2 Reference standards
- 3.6 Techniques general
 - 3.6.1 Surface or subsurface flaw detection3.6.2 Noise suppression

4.0 Interpretation/Evaluation

- 4.1 Flaw detection
 - 4.1 Process control
 - 4.3 General interpretations
 - 4.4 Defect characterization
 - 4.4 Defect characterization

5.0 Standards

- 5.1 ASME Section V Article 16 Magnetic Flux Leakage
- 5.2 API 653 Appendix G
- 6.0 Procedures

Magnetic Flux Leakage Testing Method, Level I, II, and III Training References

ASNT Questions & Answers Book: Electromagnetic Testing Method. Columbus, OH: The American Society for Nondestructive Testing, Inc. Latest edition.*

Beissner, R.E., G.A. Matzkanin, and C.M. Teller. NTIAC-80-1, NDE Applications of Magnetic Leakage Field Methods. January 1980.

Bray, D.E. and R.K. Stanley. *Nondestructive Evaluation, A Tool in Design, Manufacturing and Service*, revised edition. CRC Press. 1996.

MFL Compendium: Articles on Magnetic Flux Leakage – Collected from Materials Evaluation Published from 1953 to 2006. Columbus, OH: The American Society for Nondestructive Testing, Inc. 2010.*

Moore, D.G., tech. ed., P.O. Moore, ed. *Nondestructive Testing Handbook*, third edition: Volume 8, *Magnetic Particle Testing*. Columbus, OH: The American Society for Nondestructive Testing, Inc. 2008.*

Nondestructive Evaluation and Quality Control: ASM Handbook, Volume 17. Metals Park, OH: ASM International. 1989.*

Udpa, S.S., tech. ed, P.O. Moore, ed. *Nondestructive Testing Handbook*, third edition: Volume 5, *Electromagnetic Testing*. Columbus, OH: The American Society for Nondestructive Testing, Inc. 2004.*

^{*} Available from The American Society for Nondestructive Testing, Inc., Columbus OH.

MW Microwave Testing Topical Outlines

Microwave Technology Level I Topical Outline

Theory Course

1.0 Introduction to Microwave Theory

- 1.1 Microwave scanning
- 1.2 Reflection interference pattern
- 1.3 Differential amplitude measurement
- 1.4 Basic math review

2.0 Basic Electromagnetic Theory

- 2.1 Nature of EM waves
- 2.2 Wave generation
- 2.3 Propagation and modes

3.0 Material Properties

3.1 Conductors and dielectrics

4.0 Scanning Microwave Basics

- 4.1 Scanning microwave interference pattern image
 - 4.1.1 Interference pattern
 - 4.1.2 Compare amplitude of reflected signal with standing wave
 - 4.1.3 Emitter and receiver in probe fixed physical relationship
 - 4.1.4 Fixed phase relationship
- 4.2 Probe design
 - 4.2.1 Phase relation
 - 4.2.2 2 channel receiver
 - 4.2.3 Stand off
- 4.3 Antenna and sensor pattern 4.3.1 Reflected signal pattern
- 4.4 Image creation
 - 4.4.1 Signal voltage position
 - 4.4.1 Signal voltage position
 - 4.4.2 Interference map phase relationship4.4.3 Channel relationship
- 4.5 Signal differential and phase relationship
- 4.6 Interference pattern image
 - 4.6.1 Line and circle patterns
 - 4.6.2 Nodes and depth
- 4.7 Measurement
 - 4.7.1 Interference patterns
 - 4.7.2 Wavelength in material

Technique Course

1.0 Basic Scanning Microwave Instrument

1.1 System hardware

2.0 Instrument Electronics

- 2.1 Transmitter
- 2.2 Receiver
- 2.3 Antennas
- 2.4 Probe
- 2.5 Position interface
- 2.6 Sampling
- 2.7 Data format

3.0 Position Control

- 3.1 Positioning interface
- 3.2 Position feedback

4.0 Antenna Design

- 4.1 Phase relation
- 4.2 2 channel receiver
- 4.3 Stand off

5.0 Display System

- 5.1 Hardware
- 5.2 Display software

6.0 Control Functions

- 6.1 Power
- 6.2 Signal penetration
- 6.3 Response amplification
- 7.0 Data Collection and Formatting

Microwave Technology Level II Topical Outline

Theory Course

- 1.0 Measure Electromagnetic Wave Interaction with Part
 - 1.1 Attenuation
 - 1.2 Reflection

2.0 Maxwell's Equations

3.0 Microwave Propagation

- 3.1 Wave propagation
- 3.2 Wave interaction with matter

4.0 Microwave Energy and Excitation Energies

5.0 Microwave Energy Field – Charge Interaction

- 5.1 Dipole moment
- 5.2 Polarity
- 5.3 Interference
- 5.4 Anisotropic material properties

6.0 Material Properties

- 6.1 Conductors and dielectrics
- 6.2 Excitation energies

7.0 Wave Propagation

- 7.1 Attenuation and impedance
- 7.2 Reflection
- 7.3 Refraction
- 7.4 Beam spread

8.0 Microwave Antennas

- 8.1 Antenna pattern polarization8.1.1 Energy profile
- 9.0 Phase Relationship

Technique Course

1.0 Data Format and Collection

- 1.1 Meta data (heading and reference data)
- 1.2 Scan pattern
- 1.3 Sample density
- 1.4 File management
- 1.5 Transportability

2.0 Instrument Characteristics

- 2.1 Scanning microwave interference pattern image
 - 2.1.1 Interference pattern
 - 2.1.2 Compare amplitude of reflected signal with standing wave
 - 2.1.3 Emitter and receiver in probe fixed physical relationship
 - 2.1.4 Fixed phase relationship
- 2.2 Probe design
 - 2.2.1 Phase relation
 - 2.2.2 Multi-channel receiver
 - 2.2.3 Stand off
- 2.3 Antenna pattern
 - 2.3.1 Optimizing beam geometry
- 2.4 Image creation
 - 2.4.1 Multiple channels
 - 2.4.2 Variable frequency
- 2.5 Signal differential and phase relationship
 - 2.5.1 Phase vector
 - 2.5.2 Unit circle
 - 2.5.3 Analysis

3.0 Calibration

- 3.1 Frequency selection
- 3.2 Standoff
- 3.3 Power
- 3.4 Gain
- 3.5 Sample rate
- 3.6 Scan separation

4.0 Calibration Blocks

- 4.1 Nominal specimen
- 4.2 Fault examples
- 4.3 Measurement
 - 4.3.1 Dielectric constant
 - 4.3.2 Wave length in material
 - 4.3.3 Loss tangent

5.0 Imaging Surfaces at a Distance

6.0 Thickness Measurement

7.0 Density Measurement

8.0 Evaluation

- 8.1 Codes and standards
- 8.2 Determination of relative condition8.2.1 Comparison of tested part to prototype8.2.2 Comparison to nominal
- 8.3 Evaluation of artifacts
- 8.4 Validation of results

Microwave Technology Level III Topical Outline

Theory Course

- 1.0 Microwave Signal Phase Relationship
- 2.0 Wave Behavior in Complex Structures
- 3.0 Lenses and Horns
- 4.0 Microwave Interaction with Matter

Technique Course

5.0 Basic Materials, Fabrication, and Product Technology

- 5.1 Fundamentals of material technology
 - 5.1.1 Properties of materials
 - 5.1.1.1 Strength and elastic properties
 - 5.1.1.2 Physical properties
 - 5.1.1.3 Material properties testing
 - 5.1.2 Origin of discontinuities and failure modes
 - 5.1.2.1 Inherent discontinuities
 - 5.1.2.2 Process-induced discontinuities
 - 5.1.2.3 Service-induced discontinuities
 - 5.1.3 Statistical nature of detecting and characterizing discontinuities

- 5.2 Dielectric materials susceptible to microwave examination
 - 5.2.1 Plastics
 - 5.2.1 Plastics 5.2.2 Rubber
 - 5.2.2 Rubber 5.2.3 Resins
 - 5.2.3 Resins
 - 5.2.4 Fiberglass reinforced plastic
 - 5.2.5 Ceramics
 - 5.2.6 Composites
 - 5.2.7 Advanced materials
 - 5.2.8 Glass
 - 5.2.9 Coatings
- 5.3 In-process materials
- 5.4 Structures of interest

6.0 Origin of Discontinuities and Failure Modes

- 6.1 Process-induced discontinuities
 - 6.1.1 Placement geometry
 - 6.1.2 Contaminants
 - 6.1.3 Bonds between layers
 - 6.1.4 Voids
 - 6.1.5 Porosity
 - 6.1.6 Incorrect chemistry
 - 6.1.7 Incorrect material phase/crystallization
- 6.2 Service-induced discontinuities
 - 6.2.1 Inherent discontinuities
 - 6.2.2 Mechanical disruption
 - 6.2.3 Thermal damage
 - 6.2.3.1 Material phase differences6.2.3.2 Crystal structure changes

7.0 Properties of Materials

- 7.1 Strength and elastic properties
- 7.2 Physical properties
- 7.3 Material properties testing
- 8.0 Statistical Nature of Detecting and Characterizing Discontinuities

9.0 Thickness Measurements

- 9.1 Coatings
- 9.2 Parts

10.0 Fundamentals of Fabrication and Product Technology

- 10.1 Raw materials processing
 - 10.1.1 Castings
 - 10.1.2 Extrusions
 - 10.1.3 Layered composites
 - 10.1.4 Resin-coated fabrics
 - 10.1.5 Ceramics
 - 10.1.5.1 Sintered materials
 - 10.1.5.2 Ceramic composites
 - 10.1.5.3 Monolithic ceramics
 - 10.1.6 Organic composites
 - 10.1.6.1Reinforcement
 - 10.1.7 Plastics
 - 10.1.8 Elastomers 10.1.8.1 Reinforcement

10.2 Joining

- 10.2.1 Adhesives
- 10.2.2 Thermally welded joints
- 10.2.3 Resin joining
- 10.2.4 Mechanical coupling
- 10.3 Coatings
 - 10.3.1 Coating inspection
 - 10.3.2 Inspection under coatings

11.0 Evaluation

- 11.1 Codes and standards
- 11.2 Design and construction specifications
- 11.3 Development of reference standards
- 11.4 Determination of relative condition
 - 11.4.1 Comparison of tested part to prototype 11.4.2 Comparison to nominal
- 11.5 Evaluation of artifacts
- 11.6 Validation

12.0 Responsibilities of Levels of Certification

- 12.1 Level III 12.2 Level II
- 12.3 Level I trainee

Microwave Technology Level I, II, and III Training References

Brooks, C. and A. Choudhury. *Failure Analysis of Engineering Materials*, first edition. New York: McGraw-Hill Professional. 2001.

Carr, J.J. *Practical Antenna Handbook*, fourth edition, New York: McGraw-Hill/Tab Electronics. 2001.

Henderson, F.M. and A.J. Lewis, eds. *Principles & Applications of Imaging Radar*, Volume 2. New York: John Wiley & Sons, Inc. 1998.

Kalpakjian, S. and S.R. Schmid. *Manufacturing Processes for Engineering Materials*, fifth edition. New York: Prentice Hall. 2007.

Lerner, R.G. and G.L. Trigg. *Encyclopedia of Physics*, third edition, New York: VCH Publisher. 2005.

Materials and Processes for NDT Technology, second edition. Columbus, OH: The American Society for Nondestructive Testing, Inc. 2016.

MW Compendium: Articles on Microwave Technology – Collected from ASNT Publications. Columbus, OH: The American Society for Nondestructive Testing, Inc. 2016.*

Nayfeh, M.H. and M.K. Brussel. *Electricity and Magnetism*, New York: John Wiley & Sons. 1985.

Recommended Practice No. SNT-TC-IA: Personnel Qualification and Certification in Nondestructive Testing. Columbus, OH: The American Society for Nondestructive Testing, Inc. Latest edition.*

ANSI/ASNT CP-105-2016 | **MW**

Stakenborghs, R. "Specific Application NDE Method Leads to Development of Novel Microwave NDE Technique," Inspectioneering Journal, (11) No. 1, (Jan/Feb 2005): 11-13.

Stakenborghs, R. and J. Little. "A Modern Approach to Condition-Based Maintenance of Reinforced Rubber Cooling System Expansion Joints Utilizing a Microwave Nondestructive Inspection Method- ICONE17-75602," Proceedings of the Seventeenth International Conference on Nuclear Engineering, (2):1003-1009. New York: American Society for Mechanical Engineering. 2009.

T. Chady et al. eds. "Application of Microwave Interferometry in Complex Engineered Dielectric Materials," Electromagnetic Nondestructive Evaluation (XIV). Amsterdam, Netherlands: IOS Press. 2011. Tipler, P.A. and R.A. Llewellyn. *Modern Physics*, fifth edition. New York: W.H. Freeman. 2007.

Udpa, S.S., tech. ed, P.O. Moore, ed. *Nondestructive Testing Handbook*, third edition: Volume 5, *Electromagnetic Testing*. Columbus, OH: The American Society for Nondestructive Testing, Inc. 2004.*

* Available from The American Society for Nondestructive Testing, Inc., Columbus, OH.

NR Neutron Radiographic Testing Topical Outlines

Neutron Radiographic Testing Level I Topical Outline

Note: Independent of the training recommended for Level I and Level II certification, a trainee is required to receive radiation safety training as required by the regulatory jurisdiction. A Radiation Safety Topical Outline is available in Appendix A and can be used as guidance.

Basic Neutron Radiographic Physics Course

1.0 Introduction

- 1.1 History of industrial neutron radiography
- 1.2 General principles of examination of materials by penetrating radiation
- 1.3 Relationship of penetrating neutron radiation, radiography and radiometry
- 1.4 Comparison with other NDT methods, particularly with X-rays and gamma rays
- 1.5 General areas of application
 - 1.5.1 Imaging
 - 1.5.2 Metrology
 - 1.5.3 Product

2.0 Physical Principles

- 2.1 Sources for neutron radiography (general description)
 - 2.1.1 Isotopes
 - 2.1.2 Nuclear reactors
 - 2.1.3 Accelerators
- 2.2 Interaction between neutrons and matter
 - 2.2.1 Absorption
 - 2.2.1.1 Thermal neutrons
 - 2.2.1.2 Resonance neutrons
 - 2.2.1.3 Fast neutrons
 - 2.2.2 Scatter
 - 2.2.2.1 Elastic
 - 2.2.2.2 Inelastic
- 2.3 Neutron radiography techniques
 - 2.3.1 Film imaging techniques
 - 2.3.2 Non-film imaging techniques
- 2.4 Glossary of terms and units of measure

3.0 Radiation Sources for Neutrons (Specific Description)

- 3.1 Reactors
 - 3.1.1 Principle of fission chain reactions
 - 3.1.2 Neutron thermalization (slowing down)
 - 3.1.3 Thermal neutron flux

- 3.2 Accelerators
 - 3.2.1 Types of accelerators
 - 3.2.2 Neutron-producing reactions
- 3.3 Isotopic sources
 - 3.3.1 Radioisotope + Be
 - 3.3.1.1 α Be
 - 3.3.1.2 Y Be
 - 3.3.2 Radioisotope + D 3.3.2.1 Υ – D
 - 3.3.2.1 T D
 - 3.3.3 Spontaneous fission 3.3.3.1 ²⁵²Cf

4.0 Personnel Safety Radiation Protection Review

- 4.1 Hazards of excessive exposure
 - 4.1.1 General beta-, gamma-radiation
 - 4.1.2 Specific neutron hazards
 - 4.1.2.1 Relative biological effectiveness
 - 4.1.2.2 Neutron activation
- 4.2 Methods of controlling radiation dose
 - 4.2.1 Time
 - 4.2.2 Distance
 - 4.2.3 Shielding
- 4.3 Specific equipment requirements
 - 4.3.1 Neutron monitoring dosimeters
 - 4.3.2 Gamma-ray monitoring dosimeters
 - 4.3.3 Radiation survey equipment 4.3.3.1 Beta/gamma
 - 4.3.3.2 Neutron
 - 4.3.4 Recording/record keeping
- 4.4 Radiation work procedures
- 4.5 Federal, state, and local regulations

Basic Neutron Radiographic Technique Course

1.0 Radiation-Detection Imaging

- 1.1 Converter screens
 - 1.1.1 Principles of operation
 - 1.1.2 Direct-imaging screens
 - 1.1.3 Transfer-imaging screens
- 1.2 Film principles, properties, and uses with neutron converter screens
 - 1.2.1 Radiation response
 - 1.2.2 Vacuum/contact considerations
 - 1.2.3 Radiographic speed
 - 1.2.4 Radiographic contrast

- 1.3 Track-etch
 - 1.3.1 Radiation response
 - 1.3.2 Vacuum/contact considerations
 - 1.3.3 Radiographic speed
 - 1.3.4 Radiographic contrast

2.0 Neutron Radiographic Process: Basic Imaging Considerations

- 2.1 Definition of sensitivity (including image quality indicators)
- 2.2 Contrast and definition
 - 2.2.1 Neutron energy and neutron screen relationship
- 2.2.2 Effect of scattering in object
- 2.3 Geometric principles
- 2.4 Generation and control of scatter
- 2.5 Choice of neutron source
- 2.6 Choice of film
- 2.7 Use of exposure curves
- 2.8 Cause of correction of unsatisfactory radiographs
 - 2.8.1 High film density
 - 2.8.2 Low film density
 - 2.8.3 High contrast
 - 2.8.4 Low contrast
 - 2.8.5 Poor definition
 - 2.8.6 Excessive film fog
 - 2.8.7 Light leaks
 - 2.8.8 Artifacts
- 2.9 Arithmetic of exposure

3.0 Test Result Interpretation

- 3.1 Relationship between X-ray and n-ray
- 3.2 Effects on measurement and interpretation of test
- 3.3 Administrative control of test quality by interpreter
- 3.4 Familiarization with image

Neutron Radiographic Testing Level II Topical Outline

Neutron Radiographic Physics Course

1.0 Introduction

- 1.1 General principles of examination of materials by penetrating radiation
- 1.2 Relationship of penetrating neutron radiation, radiography, and radiometry
- 1.3 Comparison with other methods, particularly with X-rays and gamma rays
- 1.4 Specific areas of application in industry

2.0 Review of Physical Principles

- 2.1 Nature of penetrating radiation (all types) 2.1.1 Particles
 - 2.1.2 Wave properties
 - 2.1.3 Electromagnetic waves
 - 2.1.4 Fundamentals of radiation physics

- 2.1.5 Sources of radiation
 - 2.1.5.1 Electronic sources
 - 2.1.5.2 Isotopic sources
 - 2.1.5.3 Nuclear reactors
 - 2.1.5.4 Accelerators
- 2.2 Interaction between penetrating radiation and matter (neutron and gamma ray)
 - 2.2.1 Absorption
 - 2.2.2 Scatter
 - 2.2.3 Other interactions
- 2.3 Glossary of terms and units of measure

3.0 Radiation Sources for Neutrons

- 3.1 Neutron sources general
 - 3.1.1 Reactors
 - 3.1.1.1 Principle of fission chain reactions
 - 3.1.1.2 Fast-neutron flux energy and spatial distribution
 - 3.1.1.3 Neutron thermalization
 - 3.1.1.4 Thermal-neutron flux energy and
 - spatial distribution
 - 3.1.2 Accelerators
 - 3.1.2.1 Types of accelerators
 - 3.1.2.2 Neutron-producing reactions
 - 3.1.2.3 Available yields and energy spectra
 - 3.1.3 Isotopic sources
 - 3.1.3.1 Radioisotope + Be
 - 3.1.3.2 Radioisotope + D
 - 3.1.3.3 Spontaneous fission ²⁵²Cf
 - 3.1.4 Beam design
 - 3.1.4.1 Source placement
 - 3.1.4.2 Collimation
 - 3.1.4.3 Filtering
 - 3.1.4.4 Shielding

4.0 Radiation Detection

4.1 Imaging

- 4.1.1 Converter screens
 - 4.1.1.1 Principles of operations
 - 4.1.1.2 Types of screens
 - 4.1.1.2.1 Direct exposure
 - 4.1.1.2.2 Transfer exposure
 - 4.1.1.2.3 Track-etch process
 - 4.1.1.2.4 Spectral sensitivity (each process)
- 4.1.2 Film principles, properties, use with neutron
 - converter screens
 - 4.1.2.1 Material examination
 - 4.1.2.2 Monitoring
- 4.1.3 Fluoroscopy
 - 4.1.3.1 Fluorescent screen
 - 4.1.3.2 Image amplification
 - 4.1.3.3 Cine techniques
- 4.1.4 Direct TV viewing
- 4.1.5 Special instrumentation associated with above techniques

- 4.2 Non-imaging devices
 - 4.2.1 Solid-state
 - 4.2.1.1 Scintillometer
 - 4.2.1.2 Photo-resistive devices
 - 4.2.1.3 Other
 - 4.2.2 Gaseous
 - 4.2.2.1 Proportional counters
 - 4.2.2.2 Geiger counters
 - 4.2.2.3 Ionization chambers
 - 4.2.2.4 Other
 - 4.2.3 Neutron detectors
 - 4.2.3.1 Boron-based gas counters
 - 4.2.3.2 Fission counters
 - 4.2.3.3 Helium-3 detectors
 - 4.2.3.4 Lithium-based scintillator
 - 4.2.3.5 Instrumentation
 - 4.2.3.5.1 Rate meters
 - 4.2.3.5.2 Counters
 - 4.2.3.5.3 Amplifiers and preamplifiers
 - 4.2.3.5.4 Recording readouts
 - 4.2.3.5.5 Other

5.0 Radiological Safety Principles Review

- 5.1 Controlling personnel exposure
- 5.2 Time, distance, shielding concepts
- 5.3 As low as reasonably achievable (ALARA) concept
- 5.4 Radiation-detection equipment
- 5.5 Exposure-device operating characteristics

Neutron Radiographic Technique Course

1.0 Neutron Radiographic Process

- 1.1 Basic neutron-imaging considerations
 - 1.1.1 Definition of sensitivity (including image quality indicators)
 - 1.1.2 Contrast and definition
 - 1.1.2.1 Neutron energy and neutron screen relationship
 - 1.1.2.2 Effect of scattering in object
 - 1.1.2.3 Exposure versus foil thickness
 - 1.1.3 Geometric principles
 - 1.1.4 Intensifying screens
 - 1.1.4.1 Fluorescent (neutron-sensitive)
 - 1.1.4.2 Metallic (neutron-sensitive)
 - 1.1.5 Generation and control of scatter
 - 1.1.6 Choice of source
 - 1.1.7 Choice of film/detector
 - 1.1.8 Use of exposure curves and process by which they are generated
 - 1.1.9 Fluoroscopic inspection
 - 1.1.9.1 Theory of operation
 - 1.1.9.2 Applications
 - 1.1.9.3 Limitations
 - 1.1.10 Film processing
 - 1.1.10.1 Darkroom procedures
 - 1.1.10.2 Darkroom equipment and chemicals
 - 1.1.10.3 Film processing do's and don'ts

- 1.1.11 Viewing of radiographs
 - 1.1.11.1 Illuminator requirements (intensity)
 - 1.1.11.2 Background lighting
 - 1.1.11.3 Judging quality of neutron radiographs
- 1.1.12 Causes and correction of unsatisfactory
 - radiographs
 - 1.1.12.1 High film density
 - 1.1.12.2 Insufficient film density
 - 1.1.12.3 High contrast
 - 1.1.12.4 Low contrast
 - 1.1.12.5 Poor definition
 - 1.1.12.6 Excessive neutron scatter
 - 1.1.12.7 Fog
 - 1.1.12.8 Light leaks
 - 1.1.12.9 Artifacts
- 1.1.13 Arithmetic of exposure and of other factors affecting neutron radiographs
- 1.2 Miscellaneous applications
 - 1.2.1 Blocking and filtering
 - 1.2.2 Multi-film techniques
 - 1.2.3 Enlargement and projection
 - 1.2.4 Stereoradiography
 - 1.2.5 Triangulation methods
 - 1.2.6 Autoradiography
 - 1.2.7 Flash neutron radiography
 - 1.2.8 "In-motion" radiography and fluoroscopy
 - 1.2.9 Backscatter neutron radiography
 - 1.2.10 Neutron tomography
 - 1.2.11 Micro-neutron radiography
 - 1.2.12 Causes of "diffraction" effects and minimization of interference with test
 - 1.2.13 Determination of focal-spot size
 - 1.2.14 Panoramic techniques
 - 1.2.15 Altering film contrast and density
 - 1.2.16 Gaging and control processes

2.0 Test Result Interpretation

- 2.1 Basic factors
 - 2.1.1 General aspects (relationship between X-ray and neutron radiographs)
 - 2.1.2 Effects on measurement and interpretation of test
 - 2.1.3 Administrative control of test quality by interpreter
 - 2.1.4 Familiarization with image
- 2.2 Material considerations
 - 2.2.1 Metallurgy or other material consideration as it affects use of item and test results
 - 2.2.2 Materials-processing effects on use of item and test results

59

- 2.2.3 Discontinuities their causes and effects
- 2.2.4 Radiographic appearance of discontinuities
- 2.3 Codes, standards, specifications, and procedures
 - 2.3.1 Thermal neutron radiography
 - 2.3.2 Resonance neutron radiography
 - 2.3.3 Other applicable codes, etc.

Neutron Radiographic Testing Level III Topical Outline

1.0 Principles/Theory

- 1.1 Nature of penetrating radiation
- 1.2 Interaction between penetrating radiation and matter
- 1.3 Neutron radiography
 - 1.3.1 Imaging by film
 - 1.3.2 Imaging by fluorescent materials
 - 1.3.3 Imaging by electronic devices
- 1.4 Radiometry

2.0 Equipment/Materials

- 2.1 Sources of neutrons
 - 2.1.1 Reactors
 - 2.1.2 Accelerators
 - 2.1.3 Isotopic sources
 - 2.1.4 Beam control factors
- 2.2 Radiation detectors
 - 2.2.1 Imaging
 - 2.2.1.1 Converter screens
 - 2.2.1.2 Film principles, properties, use with neutron converter screens
 - 2.2.1.3 Fluoroscopy
 - 2.2.1.4 TV and optical systems
- 2.3 Non-imaging devices
 - 2.3.1 Solid-state detectors
 - 2.3.2 Gaseous ionization detectors
 - 2.3.3 Neutron detectors
 - 2.3.4 Instrumentation
 - 2.3.5 Gaging and control processes

3.0 Techniques/Calibrations

- 3.1 Blocking and filtering
- 3.2 Multi-film technique
- 3.3 Enlargement and projection
- 3.4 Stereoradiography
- 3.5 Triangulation methods
- 3.6 Autoradiography
- 3.7 Flash radiography
- 3.8 In-motion radiography
- 3.9 Fluoroscopy
- 3.10 Electron emission radiography
- 3.11 Micro-radiography
- 3.12 Laminography (tomography)
- 3.13 Control of diffraction effects
- 3.14 Panoramic exposures
- 3.15 Gaging
- 3.16 Real time imaging
- 3.17 Image analysis techniques

4.0 Interpretation/Evaluation

- 4.1 Radiographic interpretation
 - 4.1.1 Image-object relationships
 - 4.1.2 Material considerations
 - 4.1.2.1 Material processing as it affects use of item and test results
 - 4.1.2.2 Discontinuities, their cause and effects
 - 4.1.2.3 Radiographic appearance of
 - discontinuities
 - 4.1.3 Codes, standards, and specifications

5.0 Procedures

- 5.1 The radiographic process
 - 5.1.1 Imaging considerations
 - 5.1.1.1 Sensitivity
 - 5.1.1.2 Contrast and definition
 - 5.1.1.3 Geometric factors
 - 5.1.1.4 Intensifying screens
 - 5.1.1.5 Scattered radiation
 - 5.1.1.6 Source factors
 - 5.1.1.7 Detection media
 - 5.1.1.8 Exposure curves
- 5.2 Film processing
 - 5.2.1 Darkroom procedures
 - 5.2.2 Darkroom equipment and chemicals
 - 5.2.3 Film processing
- 5.3 Viewing of radiographs
 - 5.3.1 Illuminator requirements
 - 5.3.2 Background lighting
 - 5.3.3 Optical aids
- 5.4 Judging radiographic quality
 - 5.4.1 Density
 - 5.4.2 Contrast
 - 5.4.3 Definition
 - 5.4.4 Artifacts
 - 5.4.5 Image quality indicators (IQIs)
 - 5.4.6 Causes and corrections of unsatisfactory radiographs

6.0 Safety and Health

- 6.1 Personnel safety and radiation hazards
 - 6.1.1 Exposure hazards
 - 6.1.1.1 General beta, gamma
 - 6.1.1.2 Specific neutron hazards
 - 6.1.2 Methods of controlling radiation exposure
 - 6.1.3 Operation and emergency procedures