Table I-3 Importance Factor, I (Wind Loads)

Category	Nonhurricane-Prone Regions and Hurricane-Prone Regions with $V=85-100$ mph and Alaska	Hurricane-Prone Regions with $V > 100$ mph
1	0.87	0.77
II	1.00	1.00
Ш	1.15	1.15
IV	1.15	1.15

GENERAL NOTE: The building and structure classification categories are listed in Table I-2.

Table I-4 Velocity Pressure Exposure Coefficients, K_z

	2			
Height Above Ground Level, z, ft (m) [Note (1)]	А	В	С	D
0-15 (0-4.6)	0.32	0.57	0.85	1.03
20 (6.1)	0.36	0.62	0.90	1.03
25 (7.6)	0.39	0.66	0.94	1.12
30 (9.1)	0.42	0.70	0.98	1.16
40 (12.2)	0.47	0.76	1.04	1.22
50 (15.2)	0.52	0.81	1.09	1.27
60 (18.0)	0.55	0.85	1.13	1.31
70 (21.3)	0.59	0.89	1.17	1.34
80 (24.4)	0.62	0.93	1.21	1.38
90 (27.4)	0.65	0.96	1.24	1.40
100 (30.5)	0.68	0.99	1.26	1.43
120 (36.6)	0.73	1.04	1.31	1.48
140 (42.7)	0.78	1.09	1.36	1.52
160 (48.8)	0.82	1.13	1.39	1.55
180 (54.9)	0.86	1.17	1.43	1.58
200 (61.0)	0.90	1.20	1.46	1.61
250 (76.2)	0.98	1.28	1.53	1.68
300 (91.4)	1.05	1.35	1.59	1.73
350 (106.7)	1.12	1.41	1.64	1.78
400 (121.9)	1.18	1.47	1.69	1.82
450 (137.2)	1.24	1.52	1.73	1.86
500 (152.4)	1.29	1.56	1.77	1.89

GENERAL NOTE: Exposure categories are defined in para. 4.3.3.4. NOTE:

⁽¹⁾ Linear interpolation for intermediate values of height ${\it Z}$ is acceptable.

Table I-5 Force Coefficients, C_f

	Type of Surface	h/D		
Cross Section		1	7	25
Square (wind normal to face)	All	1.3	1.4	2.0
Square (wind along diagonal)	All	1.0	1.1	1.5
Hexagonal or octagonal	All	1.0	1.2	1.4
Round $(D\sqrt{q_z} > 2.5)$ $(D\sqrt{q_z} > 5.3, D \text{ in m, } q_z \text{ in N/m}^2)$	Moderately smooth Rough $(D'/D = 0.02)$ Very rough $(D'/D = 0.08)$	0.5 0.7 0.8	0.6 0.8 1.0	0.7 0.9 1.2
Round $(D\sqrt{q_z} \le 2.5)$ $(D\sqrt{q_z} \le 5.3, D \text{ in m, } q_z \text{ in N/m}^2)$	All	0.7	0.8	1.2

GENERAL NOTES:

- (a) The design wind force shall be calculated based on the area of the structure projected on a plane normal to the wind direction. The force shall be assumed to act parallel to the wind direction.
- (b) Linear interpolation is permitted for h/D values other than shown.
- (c) Nomenclature:
 - D = diameter of circular cross section and least horizontal dimension of square, hexagonal, or octagonal cross sections at elevation under consideration, in ft (m)
 - D' = depth of protruding elements such as ribs, corrugated jackets, or other surface irregularities that affect the roughness of the stack, in ft (m)
 - h = height of structure, in ft (m)
 - q_z = velocity pressure evaluated at height z above ground, in psf (N/m²)

NONMANDATORY APPENDIX A MECHANICAL DESIGN

See Figs. A-1 through A-13 and Table A-1.

Fig. A-1 Friction Factor, f, as Related to Reynolds Number and Stack Diameter

Fig. A-2 External Heat Transfer Coefficient for Forced and Natural Convection

Fig. A-3 Effect of a Change in the Ambient Air-Free Stream Temperature on the External Heat Transfer Coefficient for Forced Convection

GENERAL NOTE:

 $h_T = (h_{60^{\circ}\text{F}})$ (Temperature Correction Factor)_T, where

 $h_T=$ the external heat transfer coefficient for forced convection when the ambient air-free stream temperature is T (°F)

 $h_{60^{\circ}\text{F}}$ = the external heat transfer coefficient for forced convection for a T (°F) of 60°F (see Fig. A-2)

Fig. A-4 Heat Transfer Coefficient for the Air Gap Between Two Walls of a Double-Walled Metal Chimney (Mean Temperature 200°F Through 400°F)

Fig. A-5 Heat Transfer Coefficient for the Air Gap Between Two Walls of a Double-Walled Metal Chimney (Mean Temperature 500°F and 600°F)

12.0 1 ft 11.0 10.0 2 ft 3 ft 9.0 4 ft Internal Heat Transfer Coefficient, Btu/hr-ft $^2-\,^\circ F$ 8.0 6 ft 8 ft 10 ft 7.0 12 ft 15 ft 6.0 Internal diameter of cylindrical smoke stack, ft 5.0 4.0 3.0 2.0 Film temperature: 200°F 1.0 10 50 70 100 Velocity, ft/sec

Fig. A-6 Internal Heat Transfer Coefficient (Btu/hr-ft² °F) vs. Velocity (ft/sec) Film Temperature: 200°F

12.0 11.0 1 ft 10.0 2 ft 9.0 3 ft Internal Heat Transfer Coefficient, Btu/hr-ft $^2-\,^\circ\text{F}$ 8.0 4 ft 6 ft 7.0 8 ft 10 ft 12 ft 15 ft Internal diameter of cylindrical smoke stack, ft 4.0 3.0 2.0 Film temperature: 300°F 1.0 10 20 30 50 70 80 100 Velocity, ft/sec

Fig. A-7 Internal Heat Transfer Coefficient (Btu/hr-ft² °F) vs. Velocity (ft/sec) Film Temperature: 300°F

12.0 11.0 10.0 9.0 1 ft Internal Heat Transfer Coefficient, Btu/hr-ft $^2-\,^{\circ}\text{F}$ 2 ft 3 ft 4 ft 6 ft 6.0 8 ft 10 ft 12 ft 15 ft Internal diameter of cylindrical smoke stack, ft 4.0 3.0 2.0 Film temperature: 500°F 1.0 20 50 70 100 Velocity, ft/sec

Fig. A-8 Internal Heat Transfer Coefficient (Btu/hr-ft² °F) vs. Velocity (ft/sec) Film Temperature: 500°F

12.0 11.0 10.0 9.0 8.0 Internal Heat Transfer Coefficient, Btu/hr-ft²-°F 7.0 1 ft 2 ft 3 ft 6 ft 8 ft 10 ft 12 ft 4.0 15 ft Internal diameter of cylindrical smoke stack, ft 3.0 2.0 Film temperature: 1,000°F 1.0 20 30 50 70 80 100 Velocity, ft/sec

Fig. A-9 Internal Heat Transfer Coefficient (Btu/hr-ft² °F) vs. Velocity (ft/sec) Film Temperature: 1,000°F