Table I-3 Velocity Pressure Exposure Coefficients, K_z

Height Above Ground Level, z, ft (m) [Note (1)]	Exposure			
	В	С	D	
0-15 (0-4.6)	0.57	0.85	1.03	
20 (6.1)	0.62	0.90	1.08	
25 (7.6)	0.66	0.94	1.12	
30 (9.1)	0.70	0.98	1.16	
40 (12.2)	0.76	1.04	1.22	
50 (15.2)	0.81	1.09	1.27	
60 (18.0)	0.85	1.13	1.31	
70 (21.3)	0.89	1.17	1.34	
80 (24.4)	0.93	1.21	1.38	
90 (27.4)	0.96	1.24	1.40	
100 (30.5)	0.99	1.26	1.43	
120 (36.6)	1.04	1.31	1.48	
140 (42.7)	1.09	1.36	1.52	
160 (48.8)	1.13	1.39	1.55	
180 (54.9)	1.17	1.43	1.58	
200 (61.0)	1.20	1.46	1.61	
250 (76.2)	1.28	1.53	1.68	
300 (91.4)	1.35	1.59	1.73	
350 (106.7)	1.41	1.64	1.78	
400 (121.9)	1.47	1.69	1.82	
450 (137.2)	1.52	1.73	1.86	
500 (152.4)	1.56	1.77	1.89	

GENERAL NOTES:

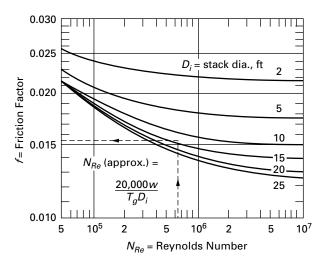
- (a) Republished with permission of the American Society of Civil Engineers (ASCE), Reston, VA; from Minimum Design Loads and Associated Criteria for Buildings and Other Structures, 2017; permission conveyed through Copyright Clearance Center, Inc.
- (b) Exposure categories are defined in para. 4.3.3.4.

NOTE: (1) Linear interpolation for intermediate values of height, z, is acceptable.

Table I-4 Force Coefficients, C_f

Cross Section		h/D		
	Type of Surface	1	7	25
Square (wind normal to face)	All	1.3	1.4	2.0
Square (wind along diagonal)	All	1.0	1.1	1.5
Hexagonal or octagonal	All	1.0	1.2	1.4
Round $(D\sqrt{q_z} > 2.5)$	Moderately smooth	0.5	0.6	0.7
$(D\sqrt{q_z} > 5.3, D \text{ in m}, q_z \text{ in N/m}^2)$	Rough $(D'/D = 0.02)$	0.7	8.0	0.9
	Very rough $(D'/D = 0.08)$	0.8	1.0	1.2
Round $(D\sqrt{q_z} \le 2.5)$	All	0.7	0.8	1.2
$(D\sqrt{q_z} \le 5.3, D \text{ in m}, q_z \text{ in Nn/m}^2)$				

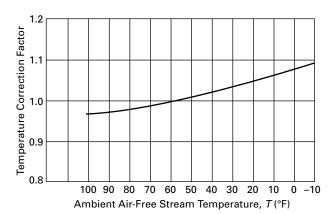
GENERAL NOTES:


- (a) Republished with permission of the American Society of Civil Engineers (ASCE), Reston, VA; from Minimum Design Loads and Associated Criteria for Buildings and Other Structures, 2017; permission conveyed through Copyright Clearance Center, Inc.
- (b) The design wind force shall be calculated based on the area of the structure projected on a plane normal to the wind direction. The force shall be assumed to act parallel to the wind direction.
- (c) Linear interpolation is permitted for h/D values other than shown.
- (d) Nomenclature:
 - D = diameter of circular cross section and least horizontal dimension of square, hexagonal, or octagonal cross sections at elevation under consideration, ft (m)
 - $D' = depth \ of \ protruding \ elements \ such \ as \ ribs, corrugated \ jackets, or \ other \ surface \ irregularities \ that \ affect \ the \ roughness \ of \ the \ stack, ft\ (m)$
 - h = height of structure, ft (m)
 - q_z = velocity pressure evaluated at height z above ground, psf (N/m²)

NONMANDATORY APPENDIX A MECHANICAL DESIGN

(21)

See Figures A-1 through A-13 and Table A-1.


Figure A-1
Friction Factor, f, as Related to Reynolds Number and Stack Diameter

Diameter, ft 10 11 12 13 14 15 10.0 9.0 Natural convection Forced convection 8.0 Ambient Air-Free Temperature: 60°F 7.0 External Heat Transfer Coefficient, Btu/hr-ft² – °F 50 mph 45 mph 5.0 40 mph 35 mph 30 mph 25 mph 3.0 20 mph 15 mph 2.0 10 mph 7 mph 1.0 5 mph 3 mph 2 mph 160 200 240 280 320 360 400 440 480 520 560 θ , Temperature Difference Between External Surface and Ambient Air-Free Stream, °F

Figure A-2
External Heat Transfer Coefficient for Forced and Natural Convection

Figure A-3
Effect of a Change in the Ambient Air-Free Stream
Temperature on the External Heat Transfer Coefficient
for Forced Convection

GENERAL NOTE:

 $h_T = (h_{60^{\circ}\text{F}})$ (Temperature Correction Factor)_T, where

 h_T = the external heat transfer coefficient for forced convection when the ambient air-free stream temperature is T (°F)

 $h_{60^{\circ} \rm F}$ = the external heat transfer coefficient for forced convection for a T (°F) of 60°F (see Figure A-2)

Figure A-4
Heat Transfer Coefficient for the Air Gap Between Two Walls of a Double-Walled Metal Chimney
(Mean Temperature 200°F Through 400°F)

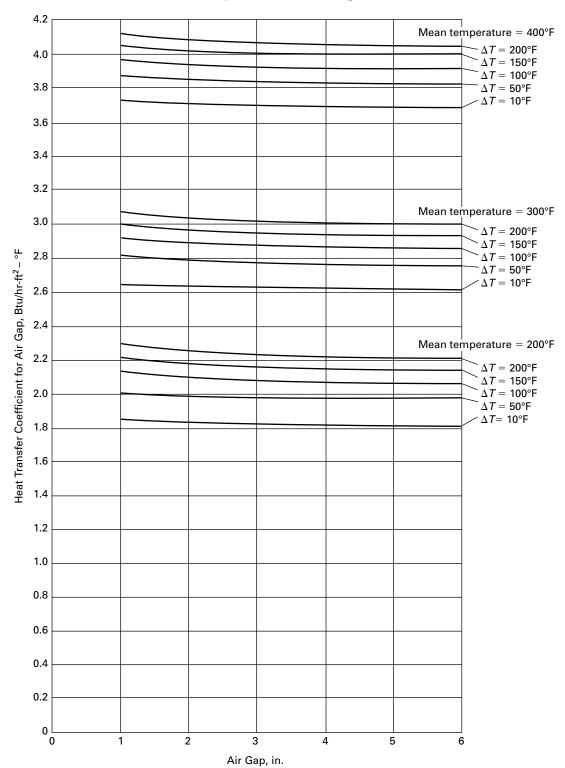


Figure A-5
Heat Transfer Coefficient for the Air Gap Between Two Walls of a Double-Walled Metal Chimney
(Mean Temperature 500°F and 600°F)

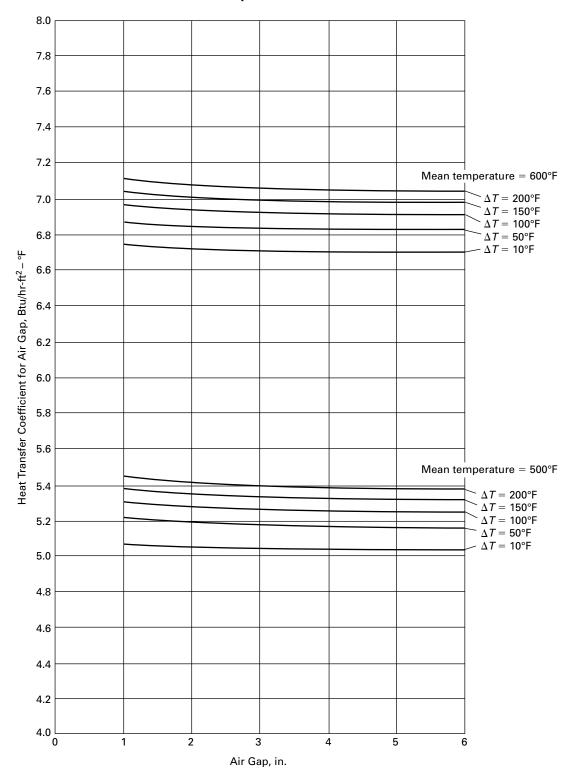


Figure A-6 Internal Heat Transfer Coefficient vs. Velocity at Film Temperature: 200°F

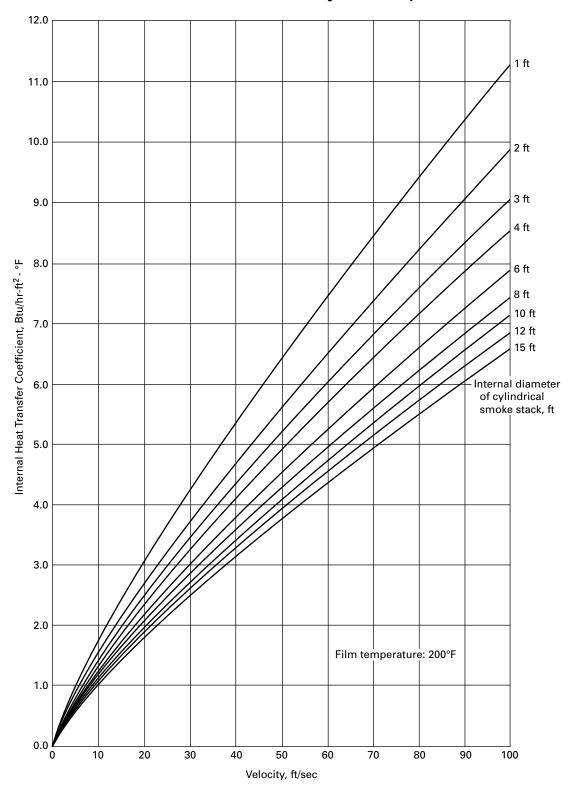


Figure A-7 Internal Heat Transfer Coefficient vs. Velocity at Film Temperature: 300°F

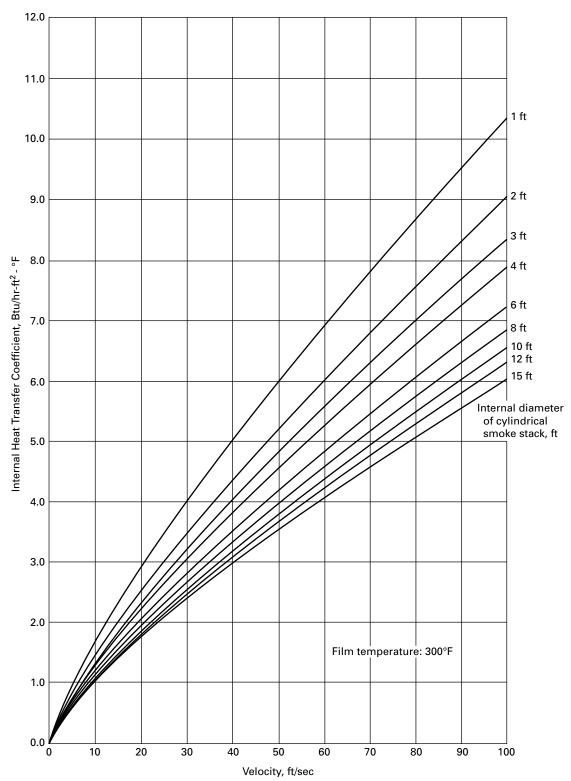


Figure A-8 Internal Heat Transfer Coefficient vs. Velocity at Film Temperature: 500°F

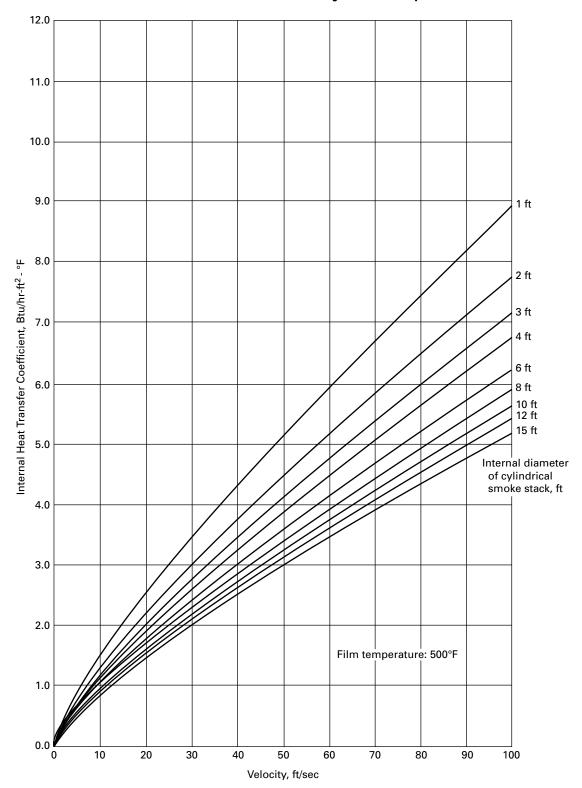
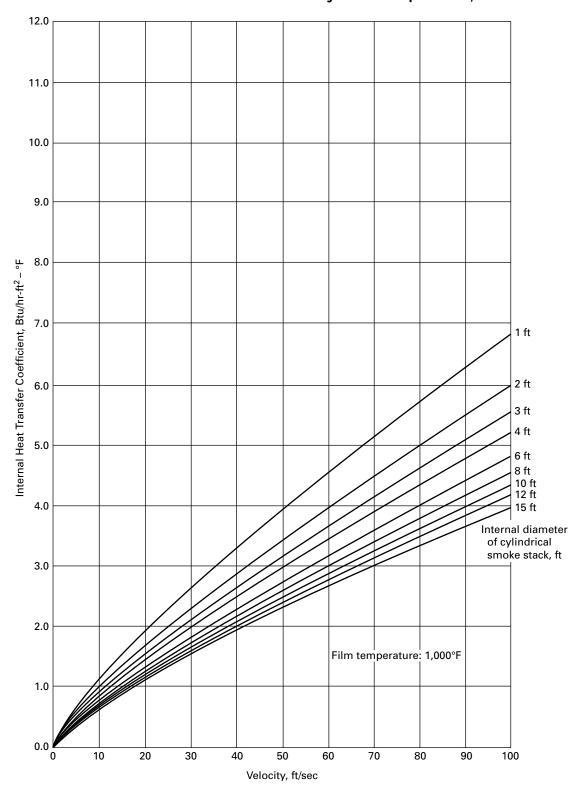



Figure A-9
Internal Heat Transfer Coefficient vs. Velocity at Film Temperature: 1,000°F

