
Metallography and Microstructures of Magnesium and Its Alloys / 811

only 11 mass% Li is needed to form the body-
centered cubic (bcc) b phase. When added to
magnesium-aluminum alloys, equilibrium
phases such as AlLi, Al2Li3, and Al4Li9 form.

Manganese. In magnesium alloys that con-
tain manganese but no aluminum, the manganese

appears as bluish-grey, primary elemental parti-
cles. Manganese combines with aluminum,
when present, to form the compounds AlMn,
Al4Mn, or Al6Mn. These compounds may be
contained in a single particle, with the ratio of
aluminum to manganese increasing from the

center to the surface of the particle. Solution heat
treatment transforms the particle to Al6Mn. The
presence of sufficient iron modifies the manga-
nese-aluminum compounds to very hard man-
ganese-aluminum-iron compounds.

Fig. 19 As-polished surfaces of (a) AM60 and AZ91D pressure die cast specimens prepared using Masterprep alumina
for the final step. Courtesy of G.F. Vander Voort, Buehler Ltd.

Fig. 21 As-polished section of AZ31 direct chill cast
billet showing solidification shrinkage. Cour-

tesy of F. Pravdic, ARC Leichtmetallkompetenzzentrum
Ranshofen

Fig. 20 Scanning electron micrograph of the interden-
dritic microporosity associated with solidifica-

tion defect shown in Fig. 2(b). Note the rounded appear-
ance of the grains that solidified without proper metal
feeding. Courtesy of B.R. Powell, General Motors Corpo-
ration

Fig. 22 Microstructure of high-pressure die cast AM50A. (a) Near the surface. (b) Near the center of the section. The
skin effect can be clearly seen in (a) where a high-integrity layer has formed, characterized by an extremely

fine grain size and no porosity. (b) Due to a section thickness of �4 mm (�0.16 in.), the center section also cooled rapidly,
resulting in a uniform distribution of fine grains. Etchant 5, Table 7. Courtesy of C.J. Padfield

Fig. 23 (a) Example of an oxide film in an AM60B high-pressure die casting. Etchant 5, Table 7. Courtesy of C.J.
Padfield. (b) An oxide cluster in a direct chill cast AZ31 billet. As-polished (unetched). Courtesy of F. Pravdic,

ARC Leichtmetallkompetenzzentrum Ranshofen

Fig. 24 Transmission electron micrograph of AZ91
showing continuous (Widmanstätten) precipi-

tation of Al12Mg17 after 8 h at 200 �C (390 �F). Courtesy of
J.-F. Nie, Monash University
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Particles of manganese-aluminum compound
often occur in the form of chunks and needles.
The particles sometimes have irregular, sawtooth
surfaces, which result from growth in the mushy
and the early solid stages.

Rare Earth Metals. Because of the low sol-
ubility of rare earth metals in magnesium, there
is usually an excess of Mg9RE compound at the
grain boundaries of magnesium-mischmetal and
magnesium-didymium alloys. In Mg-Y-Nd al-
loys, the precipitation sequence ends with the
equilibrium b phase, which has a composition of
Mg14Nd2Y (Ref 70). Figure 26 is an electron mi-
crograph showing the precipitate structure after
48 h aging at 250 �C. In Mg-Ag-RE alloys, the
equilibrium phase is Mg12Nd2Ag.

When added to magnesium-aluminum alloys,
a lamellar interdendritic phase forms with the
composition Al11RE3 (�Al4RE). A minor par-
ticulate interdendritic phase also forms with the
composition Al2RE (Ref 45). The microstructure
of AE42 is described in Fig. 27.

Silicon is present in magnesium alloys as par-
ticles of Mg2Si. These particles are distinguished
by their angular outline, smooth edges, and light-
blue color.

Silver. Silver contributes to precipitation
hardening by forming incoherent precipitates
with the composition Mg12Nd2Ag. These precip-
itates contribute to increased strength and creep
resistance.

Strontium. Alloying with strontium results in
different microstructures depending on the stron-
tium-to-aluminum ratio. For strontium-to-alu-
minum ratio �0.3, Al4Sr is the only intermetallic
phase present (Fig. 28). The strontium-to-alu-
minum ratio controls the formation of
Al12Mg17—at very low ratios there is insufficient
strontium to tie up all of the available aluminum,

and Al12Mg17 can form (Ref 10). At higher ra-
tios, a ternary phase Mg-Al-Sr phase is also ob-
served (Fig. 29). Figure 30 shows the lamellar
structure of the eutectic phase.

Thorium. At the eutectic temperature of 589
�C (1092 �F), 4.5% Th is soluble in magnesium;
however, because of alloy segregation, magne-
sium alloys containing as little as 2% Th often
contain a divorced eutectic and show massive
magnesium-thorium compound at the grain
boundaries. At temperatures below the eutectic,
this compound is also precipitated from solid so-
lution. In castings, the precipitate forms within
grains and is seldom visible. In worked struc-

tures, the precipitate is often clearly visible at
grain boundaries.

The addition of thorium to magnesium-zinc
alloys changes the degenerate eutectic, which
contains magnesium-zinc compound, to a la-
mellar eutectic, which contains a Mg-Th-Zn
compound.

Tin is useful when alloyed with magnesium
in combination with small amounts of alumi-
num. It substitutes in several intermetallic phases
including Al9(Ca,Sn) and Al2(Ca,Sn,Sr).

Zinc. At the eutectic temperature of 340 �C
(644 �F), 6.2% Zn is soluble in magnesium, but
at lower temperatures there is general precipita-

Fig. 25 Brightfield transmission electron micrograph of
AXJ530. The microstructure consists of primary

magnesium with aluminum in solid solution surroundedby
a grain-boundary eutectic phase. The eutectic phase has a
lamellar structure consisting of alternating layers of mag-
nesium and the intermetallic (Al,Mg)2Ca. Note the dislo-
cation networks within the primary magnesium grains (ar-
rows). Courtesy of B.R. Powell, General Motors
Corporation

Fig. 27 Brightfield transmission electron micrograph of high-pressure die cast AE42. (a) Primary magnesium with
aluminum in solid solution surrounded by the lamellar phase Al11RE3 and the particulate phase Al2RE. (b)

After exposure to temperature above 175 �C (345 �F), the presence of the lamellar phase is reduced and the particulate
phase dominates. This may help to explain the loss in creep resistance of this alloy at these temperatures. B.R. Powell,
General Motors Corporation

Fig. 26 Brightfield electron micrograph of sand cast WE54 after aging for 48 h at 250 �C (480 �F). The image shows
assemblies of plate-shaped and irregular globular precipitates. With extended aging, the b� phase decomposes,

and the b1 plates transform in situ to the equilibrium phase, although the peak-aged microstructure contains all three
phases. Courtesy of J.-F. Nie, Monash University
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Fig. 29 Backscattered electron micrograph (FEG-SEM) of high-pressure die cast AJ52. Microstructure consists of pri-
mary magnesium grains surrounded by grain-boundary eutectic phase. Two intermetallic phases are present:

Al4Sr and a ternary Al-Mg-Sr phase. Courtesy of Éric Baril, Noranda

Fig. 28 Backscattered electron micrograph (FEG-SEM) of high-pressure die cast AJ62L (low strontium). Microstructure
consists of primary magnesium grains surrounded by grain-boundary eutectic phase. Al4Sr is the main inter-

metallic phase present, but due to the low strontium content, some Al12Mg17 also forms. Courtesy of Éric Baril, Noranda

Fig. 30 Transmission electron micrograph and diffrac-
tion pattern of high-pressure die cast AJ52. The

eutectic phase has a lamellar structure consisting of alter-
nating layers of magnesium and Al4Sr. The lamellar struc-
ture is similar to that of AE42 and AXJ530. Courtesy of Éric
Baril, Noranda

tion of magnesium-zinc compound whose par-
ticles are not clearly resolvable by optical or
electron microscopy until the alloy is overaged
(see Fig. 31 and 32).

When zinc is added to magnesium-aluminum
alloys, the magnesium-aluminum eutectic takes
a completely divorced form, in which massive
particles of Al12Mg17 compound—or of
(Al,Zn)49Mg32 compound, if the ratio of zinc to
aluminum exceeds 1 to 3—are surrounded by
magnesium solid solution. Additions of zinc to
magnesium/rare-earth metal alloys increase the
amount and continuity of the compound at the
grain boundaries. Zinc additions also promote
the change of the magnesium/rare-earth eutectic
to the divorced form. By adding approximately

2% Zn to magnesium alloys containing at least
2% Th, an acicular, or platelet, form of com-
pound develops. The acicular form entirely re-
places the massive form when the zinc content
is increased to approximately 3%, but it again
disappears when the zinc content is further in-
creased to above 5%.

Zirconium, in amounts less than 1%, is al-
loyed with magnesium and added to magnesium
alloys containing zinc, rare earth metals, or tho-
rium. The remarkable effectiveness of zirconium
in grain-refining magnesium has been explained
by the similarities in crystal structure and lattice
parameters of the two elements. The lattice pa-
rameters of zirconium (a � 0.323 nm, c �

0.514 nm) are very similar to those of magne-

sium (a � 0.320 nm, c � 0.520 nm). Magne-
sium grains nucleate epitaxially on the (0001)
basal planes of hcp �-zirconium phase crystals,
which are first to separate during cooling.

In binary magnesium-zirconium alloys, zir-
conium-rich particles can be seen within grains
and near grain boundaries. Zirconium-rich cores
generally appear as either elliptical or nearly cir-
cular form on polished sections. Electron mi-
croscopy using backscatter detection shows the
particles to be bright points within a highly cored
primary magnesium grain (Ref 71). In the more
complex alloys, zirconium may form com-
pounds with zinc and with certain elements that
are impurities in those alloys, such as aluminum,
iron, silicon, and hydrogen.
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cle: Éric Baril of Noranda, Jian-Feng Nie of
Monash University, Cory Padfield of Hyundai
America, Bob Powell of GM, Franka Pravdic of
ARC Leichtmetallkompetenzzentrum Ransho-
fen, Elke Schaberger of Gieberei-Institut,
RWTH Aachen, and George Vander Voort of
Buehler Ltd. Also, the author is extremely grate-
ful for the thorough review and helpful discus-
sions provided by Cory Padfield during this pro-
ject.

REFERENCES

1. L. Gaines et al., Analysis of the Potential for
New Automotive Uses of Wrought Magne-
sium, Center for Transportation Research
National Laboratory, United States Depart-
ment of Energy, 1996 (available to the pub-
lic from National Technical Information
Service, U.S. Department of Commerce)

https://www.normsplash.com/ASM/129998671/ASM-Handbook-Volume-9?src=spdf


814 / Metallography and Microstructures of Nonferrous Alloys
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Fig. 55 Microstructure of as-cast Mg-4.6%Zn-0.76%Zr
revealed using acetic-picral etch and viewed

with polarized light illumination plus a sensitive tint filter.
(G.F. Vander Voort, Buehler Ltd.)

Fig. 56 Microstructure of sand-cast AZ91C (Mg-9%Al-
0.25%Mn-0.7%Zn-0.0008%Be) revealed (a)

using acetic-glycol etch and viewed in bright-field illumi-
nation and (b) after etching with glycol and viewed with
polarized light illumination plus a sensitive tint filter. Part
(a) shows the general structure (primary �-Mg grains, in-
tergranular eutectic phase) after etching with acetic glycol.
Part (b) is a lower-magnification view of the near-surface
microstructure. Note the mechanical twins at the surface.
(G.F. Vander Voort, Buehler Ltd.)

Fig. 57 Comparison of (a) conventional etching and bright-field illumination with (b) electrolytic etching andpolarized
light illumination. Specimen is thixocast (semisolid process) AZ91. Electrolytic etching reveals individual

grains by the coloration while retaining good contrast at the grain boundaries. The addition of color allows for identification
of orientation of the grains, in addition to parameters such as shape factor, the ratio of minimum to maximum grain
diameters, and so on. (E. Schaberger, Gießerei-Institut, RWTH Aachen)

Fig. 54 Microstructure of as-cast Mg-2.5% rare earth elements-2.11%Zn-0.64%Zr revealed using the acetic-picral
etch and viewed with polarized light illumination plus a sensitive tint filter. Alloy segregation (coring) and

grain boundaries are well depicted in these images, as are the mechanical twins present. (G.F. Vander Voort, Buehler Ltd.)
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Metallography and Microstructures
of Nickel and Nickel-Copper Alloys
William L. Mankins, Metallurgical Services, Inc.

THE PREPARATION of metallographic spec-
imens and the microstructures of alloys contain-
ing 96% or more nickel (Nickel 200, Nickel 270,
and Duranickel 301) and nickel-copper alloys
(Monel 400, Monel R-405, and Monel K-500)
are considered in this article. Micrographs of
these alloys are shown in Fig. 1 to 15.

The procedures and materials for sectioning,
mounting, grinding, and polishing specimens are
essentially the same for all nickel alloys regard-
less of specimen size or sophistication of labo-
ratory facilities. In preparing specimens for me-
tallographic examination, it is important to
prevent cold working of the surface during
grinding/polishing steps.

Preparation for
Microscopic Examination

The specimen to be examined is cut to a con-
venient size with a silicon carbide water-cooled
abrasive cutoff wheel, then mounted in a hard

plastic, such as Bakelite (Georgia-Pacific) or a
hard epoxy resin. Next, the mounted specimen
is ground flat on a belt grinder using 120-grit
abrasive and water coolant. In general, it is pref-
erable that the exposed area of the specimen not
exceed approximately 1.6 cm2 (0.25 in.2).

Grinding may be performed manually or on
power-driven wheels using silicon carbide paper
disks, starting with 220-grit and following with
320-, 400-, and 600-grit abrasives. The specimen
is then washed thoroughly between grind steps
and cleaned ultrasonically after final grinding to
remove any abrasive particles remaining on the
surface.

Polishing. All scratches from grinding are re-
moved by polishing on a nylon cloth charged
with 6 lm diamond paste and lubricated with
lapping oil. An alternate method is to polish on
a broadcloth-covered wheel using 5 lm levi-
gated alumina (Al2O3) powder suspended in wa-
ter.

Final polishing may be performed in one or
two stages with a polishing wheel or vibratory
polisher. If a polishing wheel is used, microcloth

and c-Al2O3 powder (�0.1 lm particle size) sus-
pended in water are recommended. An alterna-
tive requires semifinal and final polishing using
a vibratory polisher. Semifinal polishing em-
ploys a nylon polishing cloth and a slurry of 0.3
lm Al2O3 and distilled water. A 350 g (12 oz)
weight is placed on the specimen throughout the
polishing cycle. At the conclusion of each pol-
ishing cycle, the specimen is cleaned ultrasoni-
cally. Final polishing employs a short-nap mi-
crocloth and a slurry of 0.05 lm Al2O3 and
distilled water. Polishing continues until the sur-
face is free of scratches.

Electropolishing. Nickel and nickel-copper
alloys can be electropolished satisfactorily, al-
though best results are generally obtained with
specimens that first have been polished mechan-
ically through 600-grit abrasive. Recommended
electrolytes and current densities for electropol-
ishing these alloys are given in Table 1. A plat-
inum cathode is suggested, and the electrolyte
should be water cooled and continuously stirred.

Fig. 1 Nickel 200, cold drawn and annealed in a con-
tinuous process at 830 �C (1525 �F). Structure:

nickel solid solution. See also Fig. 2. NaCN, (NH4)2S2O8.
100�

Fig. 2 Same as Fig. 1 but at higher magnification. Vari-
ation in shade of grains is caused by variation in

grain orientation. NaCN, (NH4)2S2O8. 500�

Fig. 3 Nickel 270, hot rolled and annealed in a contin-
uous process at 830 �C (1525 �F). Structure:

nickel solid solution. See also Fig. 4. NaCN, (NH4)2S2O8.
100�
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Fig. 4 Same alloy and same processing as in Fig. 3 but
shown at a higher magnification. The variation

in shade of the grains (dark, gray, and white) is the result
of variation in grain orientation. NaCN, (NH4)2S2O8.500�

Fig. 5 Permanickel 300, solution annealed 1 h at 1205
�C (2200 �F) and water quenched, aged 10 h at

480 �C (900 �F) and water quenched. Dispersed particles
of TiN and graphite (black dots) in nickel solid solution.
NaCN, (NH4)2S2O8. 100�

Etching. The solutions and conditions for
etching nickel alloys for microscopic examina-
tion are described in Table 2. The acids used
should be concentrated; when water is indicated,
use distilled water only.

Preparation for
Macroscopic Examination

Surfaces to be etched for macroscopic exam-
ination may be prepared by surface grinding to
a fine finish with 180-grit and 240-grit silicon
carbide paper. Finer grinding, although unnec-
essary, yields a finer surface before etching,
which requires less severe macroetching to re-
veal the metal structure.

Etching of nickel alloys for macroscopic ex-
amination is performed by immersing or swab-
bing the ground specimen for 5 to 20 s in an
etchant composed of equal parts (by volume) of
concentrated nitric acid (HNO3) and glacial ace-
tic acid. Immersion etching may be preferred,
because the metallographer can observe the sur-
face being etched and terminate etching when
features can be seen on the surface or a color
change noted.

Macroetching of nickel-copper alloys is done
by immersing or swabbing the ground specimen
in concentrated HNO3. Colorless acid should be
used to avoid staining. Depending on the pur-
pose of the examination, etching time should be
3 to 5 min. Within this range, shorter etching
times will reveal sulfur embrittlement and details

of welds in Monel; longer times will reveal gen-
eral structure, including surface and subsurface
cracks, porosity, and forging flow lines. Ma-

Fig. 6 Duranickel 301, solution annealed for 30 min at
980 �C (1800 �F) and water quenched, aged for

20 h at 480 �C (900 �F) and water quenched. Microstruc-
ture: nickel solid solution; graphite particles (black dots).
NaCN, (NH4)2S2O8. 50�

Fig. 7 Monel 400, cold drawn and annealed in a con-
tinuous process at 830 �C (1525 �F). Nickel-cop-

per solid solution with a few unidentified nonmetallic in-
clusions (black). NaCN, (NH4)2S2O8. 100�

Fig. 8 Monel R-405, cold drawn, and annealed in a
continuous process at 830 �C (1525 �F). Micro-

structure: nickel-copper solid solution with sulfide stringers
(black constituent). NaCN, (NH4)2S2O8. 100�

Fig. 9 Monel K-500 in the hot rolled condition. Struc-
ture: nickel-copper solid solution. Variation in

shade of grains is the result of variation in grain orientation.
Glyceregia. 100�

Table 1 Electrolytes and current densities
for electropolishing of nickel and nickel-
copper alloys

Electrolyte

composition Applicable alloys

Current density

A/cm2 A/in.2

37 mL H3PO4

(conc), 56 mL

glycerol, 7 mL

H2O

Nickel 200 1.4–1.5 9–10

Nickel 270 1.5–1.8 10–12

Duranickel 301 1.25–1.5 8–10

Monel 400 0.9–1 6–7

33 mL HNO3

(conc), 66 mL

methanol

Monel 400,

R-405, K-500

1.5–2.3 10–15
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Fig. 10 Monel K-500, solution annealed for 1 h at 1205
�C (2200 �F) and quenched in water. Nickel-

copper solid-solution matrix. See also Fig. 11 to 15. NaCN,
(NH4)2S2O8. 100�

Fig. 11 Same as Fig. 10 but at higher magnification.
Portions of only three grains are visible. The

black dots are nitride particles. See also Fig. 10 and 12 to
15. NaCN, (NH4)2S2O8. 1000�

Fig. 12 Monel K-500, held 1 h at 1205 �C (2200 �F),
transferred to a furnace at 595 �C (1100 �F) and

aged 4 h, water quenched. Solid-solution matrix; nitride
particles. See also Fig. 10, 11, and 13 to 15. NaCN,
(NH4)2S2O8. 100�

Fig. 13 Same as Fig. 12 but at higher magnification.
Structure contains precipitated Ni3(Al,Ti), re-

solvable only by electron microscopy unless aging tem-
perature is higher than 595 �C (1100 �F). See also Fig. 10
to 12 and 14, 15. NaCN, (NH4)2S2O8. 1000�

Fig. 14 Monel K-500, held 1 h at 1205 �C (2200 �F),
transferred to a furnace at 705 �C (1300 �F) and

aged 4 h, water quenched. Precipitated Ni3(Al,Ti) appears
as tiny particles dispersed in the matrix solid solution. See
also Fig. 10 to 13 and 15. NaCN, (NH4)2S2O8. 100�

Fig. 15 Same as Fig. 14 except at a higher magnifica-
tion. The Ni3(Al,Ti) precipitate is better re-

solved. When this precipitate is resolvable by optical mi-
croscopy, overaging is indicated. See also Fig. 10 to 14.
NaCN, (NH4)2S2O8. 1000�

Table 3 Nominal compositions of nickel
and nickel-copper alloys

Alloy Composition

Nickel 200 99.5Ni-0.08C-0.18Mn-0.20Fe

Nickel 270 99.98Ni-0.01C

Permanickel 300 98.5Ni-0.20C-0.25Mn-0.30Fe-0.35Mg-

0.40Ti

Duranickel 301 96.5Ni-0.15C-0.25Mn-0.30Fe-0.63Ti-

4.38Al

Monel 400 66.5Ni-31.5Cu-0.15C-1.0Mn-1.25Fe

Monel R-405 66.5Ni-31.5Cu-0.15C-1.0Mn-1.25Fe-

0.043S

Monel K-500 66.5Ni-29.5Cu-0.13C-0.75Mn-1.0Fe-

0.60Ti-2.73Al

Table 2 Etchants for microscopic examination of nickel and nickel-copper alloys for grain
boundaries and general structure

Composition of etchant Conditions for use

Etchants for Nickel 200 and 270; Permanickel; Duranickel 301; and Monel 400, R-450, and K-500

1 part 10% aqueous solution of NaCN (sodium cyanide), 1 part

10% aqueous solution of (NH4)2S2O8 (ammonium persulfate).

Mix solutions when ready to use.

Immerse or swab specimen for 5–90 s.(a)

1 part HNO3 (conc), 1 part acetic acid (glacial). Use fresh solution. For revealing grain boundaries. Immerse or swab

specimen for 5–20 s.

7.5 mL HF, 2.5 mL HNO3, 200 mL methanol Immerse sample 2–4 min.

5 g FeCl3, 50 mL HCl, 100 mL H2O Immerse or swab specimen up to a few minutes.

Alternate etchant for Monel K-500

Glyceregia: 10 mL HNO3 (conc), 20 mL HCl (conc), 30–40 mL

glycerol

Etch by immersing or swabbing the specimen for

30 s to 5 min.

(a) This cyanide-containing etchant is very hazardous in its preparation and use. Cyanide, even in small quantities, as dust, solution, or fumes may

be fatal when taken into the body. A fume hood must be used with this etchant.
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croetching can be hastened by warming the spec-
imen in hot water prior to etching.

Microstructures of Nickel
and Nickel-Copper Alloys

Nickel-base alloys are widely used as high-
temperature materials. Micrographs of such al-
loys are presented in the article “Metallography
and Microstructures of Heat Resistant Alloys” in
this Volume. The micrographs in this article
show structures of nickel alloys that are used pri-
marily for their resistance to corrosion and for
other specialized applications. As shown in Ta-
ble 3, these alloys range in nickel content from
66.5 to 99.98%.

The microstructure of Nickel 200 typically
contains some nonmetallic inclusions (princi-
pally oxide). Prolonged exposure to tempera-
tures from 425 to 650 �C (800 to 1200 �F) results
in the precipitation of graphite from the nickel
solid solution.

Although Nickel 270 (99.98% Ni) is less
likely than Nickel 200 to contain nonmetallic in-
clusions, their structures are similar, assuming
that mechanical working and thermal treatments
are similar (compare Fig. 1 and 2 to Fig. 3 and
4). The very low carbon in Nickel 270 (�0.01%)

assumes the absence of graphite after long time
exposures at elevated temperatures (425 to 650
�C, or 800 to 1200 �F).

Permanickel 300 is an age-hardening alloy
that, in the solution-annealed condition, shows
randomly dispersed particles of titanium nitride
(TiN) and graphite when observed through an
optical microscope. When subsequently age
hardened, the alloy has a similar appearance
(Fig. 5), but it also contains a fine granular pre-
cipitate. This phase is not resolvable by optical
microscopy in material aged at a normal aging
temperature (480 �C, or 900 �F) but is visible in
overaged material. The phase or phases respon-
sible for the age hardening of this alloy have not
been positively identified. The mechanism ap-
pears to be a complex precipitate. It has been
observed that in addition to nickel, carbon, mag-
nesium, and titanium are required for full hard-
ness. Precipitation of a compound such as
Ni3(Mg,Ti)Cx seems likely during age harden-
ing.

Duranickel 301, an age-hardening alloy, com-
bines the corrosion resistance of unalloyed
nickel with increased strength and hardness. Af-
ter solution annealing, this alloy is age hardened
by holding in the temperature range of 425 to
705 �C (800 to 1300 �F), which precipitates the
phase Ni3(Al,Ti) throughout the structure. In the

solution-annealed and properly aged condition
(Fig. 6), the precipitated phase is not resolved by
an optical microscope, but hardness effects are
easily measured. Some particles of graphite,
however, are usually visible.

Nickel-Copper Alloys. Monel 400 is a
widely used stable solid-solution alloy of nickel
and copper. Nonmetallic inclusions often appear
in the microstructure (Fig. 7).

Monel R-405 is a free-machining grade of
Monel 400 produced with an intentional addition
of sulfur (0.025 to 0.050%). The microstructures
of these two alloys are similar for the same hot/
cold working history of mechanical and thermal
treatment, except for the sulfide particles in Mo-
nel R-405, which improve its machinability
(Fig. 8).

Monel K-500 is produced by adding alumi-
num and titanium to the basic nickel-copper
composition. Solution annealing and aging pro-
duce a c� precipitate throughout the matrix. In
material aged at the normal temperature of 595
�C (1100 �F), this precipitate is not resolvable by
an optical microscope (Fig. 12, 13). However, in
material that is overaged—by holding at 705 �C
(1300 �F), for example—the precipitate is visible
by optical microscopy (Fig. 14, 15). In addition
to the precipitate, particles of TiN are usually
present in the microstructure.
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Metallography and
Microstructures of Precious
Metals and Precious Metal Alloys
Elma van der Lingen, Lesley Cornish, Stefanie Taylor, Rainer Süss, Physical Metallurgy Division, Mintek, South Africa;
Stewart Grice, Hoover & Strong Inc.

THE PRECIOUS METALS include the six
platinum-group metals (platinum, palladium,
rhodium, ruthenium, iridium, and osmium) as
well as gold and silver. These elements share
properties such as inert softness, crystal struc-
ture, relatively high density, and good corrosion
resistance, which directly influence their metal-
lographic preparation. The crystal structure of
both ruthenium and osmium is hexagonal close-
packed (hcp), whereas the other precious metals
have a face-centered cubic (fcc) structure. The
hcp structure of ruthenium and osmium makes it
possible to use polarized light for metallographic
investigations. The fcc structure is generally
relatively soft, and Vickers hardness values are
under 50 for fine platinum, palladium, gold, and
silver in the annealed condition. All the precious
metals are relatively dense, with values varying
between 10.5 g/cm3 (0.379 lb/in.3) for silver to
22.65 g/cm3 (0.818 lb/in.3) for iridium.

Precious metals are known primarily for their
use in money and jewelry. However, they also
have industrial applications, including catalysis,
high-temperature applications, electrical con-
tacts, electronics, corrosion resistance, and den-
tal and medical uses.

Specimen Preparation

Due to the high cost of material, precious met-
als samples for metallographic investigations are
usually small, which makes mounting of speci-
mens exacting. The following steps are generally
followed for preparing good metallographic
samples (Ref 1, 2).

Cutting. Precious metals should be cut with
sharp cutting tools. When cutting wheels are
used, adequate coolant is required to prevent
structural changes and smearing (Ref 1).

Mounting. Thermosetting epoxy resin is the
main medium employed for mounting of pre-
cious metals. Precious metals are often used as

coatings. To prevent damage to the coating dur-
ing polishing, plating of specimens before
mounting is recommended. Copper, nickel, or
rhodium are most often used for plating (Ref 3).
Lubricants for mount releasing should be omit-
ted, because fine cracks form between the spec-
imen and the mount, resulting in subsequent pol-
ishing and etching problems (Ref 2).

Grinding. Coarse grinding on 80- and 120-
grit SiC paper is recommended to remove the
deformation layer formed during sectioning. A
specimen that has not been subjected to cutting
can be ground on a succession of 240- to 2400-
grit SiC paper. Moderate pressure is employed,
with running water as a lubricant. Samples can
be rinsed, but a short cycle of ultrasonic cleaning
is recommended to remove any impurities after
each paper. Ultrasonic cleaning should be lim-
ited to less than 30 s to avoid cavitation (Ref 2).

Polishing. Coarse polishing should be done
with a napless cotton cloth with 6 lm polycrys-
talline diamond, odorless kerosene, or diamond
extender lubricant and moderate pressure.

Fine polishing should be carried out using a
short-napped synthetic velvet cloth with 1 lm
polycrystalline diamond and deionized water lu-
bricant, using moderate to light pressure. After
polishing, the sample can be cleaned ultrasoni-
cally in detergent and rinsed with methanol to
aid water evaporation and to minimize water-
marks on the polished microsections, then air
dried.

Because of the hardness range of precious
metals, the polishing time varies from material
to material. Microscopic investigation between
polishing steps is recommended to determine
when scratches from the previous step have been
removed and to avoid overpolishing (Ref 2).

Etchants. The four etching techniques that are
often used for precious metals include immer-
sion, swab, etch polishing, and electrolytic etch-
ing. Due to the extreme corrosion resistance of
precious metals, the etchants used are very cor-

rosive and can be hazardous. In many cases,
etchants need to be heated, which further in-
creases the risks. The hazards of working with
the relevant chemicals should be well under-
stood, and appropriate safety precautions should
be followed. For example, all etching should be
conducted under a properly operating chemical
fume hood, and inhalation of fumes from etch-
ants should be avoided. Appropriate safety
equipment, such as an acid-protective apron,
gloves, and face shield or goggles, should be
used. Disposal of the spent etchant must be in
accordance with local legal requirements (Ref 2).

A list of etchants for precious metals and their
alloys is given in Table 1 (Ref 1, 2, 4).

Microstructures of
Gold and Gold Alloys

Pure Gold

Figures 117–119, in the article “Selected
Color Images” in this Volume show macrostruc-
tures of a sectioned 1kg 99.99% pure gold bar.
The grain morphology in the gold bars varies due
to the different cooling mechanisms after cast-
ing. The samples were etched in boiling aqua
regia (HCl to HNO3: 3 to 1) for 10 to 20 s. Sev-
eral polishing/etching cycles were done to obtain
a scratch-free and stress-free surface. A signifi-
cant difference can be seen between two smaller
cast gold bars, one of which shows equiaxed
grains (Fig. 120 in the article “Selected Color
Images”), while a cold stamped bar reveals a
very fine, disordered grain structure in a stamped
bar (Fig. 121).

Gold Jewelry Alloys

Pure gold is very soft and is considered the
most malleable of all metals. Jewelry items are
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