ASCE/SEI 43-05

American Society of Civil Engineers

Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities

This document uses both the International System of Units (SI) and customary units.

American Society of Civil Engineers

Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities

This document uses both the International System of Units (SI) and customary units.

Published by the American Society of Civil Engineers

Library of Congress Cataloging-in-Publication Data

Structural Engineering Institute. Working Group for Seismic Design Criteria for Nuclear Facilities.

Seismic design criteria for structures, systems, and components in nuclear facilities/developed by Working Group for Seismic Design *Criteria for Nuclear Facilities, Dynamic Analysis of Nuclear Struc*tures Subcommittee, Nuclear Standards Committee.

p. cm.

"This document uses both the International System of Units (SI) and customary units."

Includes bibliographical references and index. ISBN 0-7844-0762-2

1. Nuclear power plants—Earthquake effects. 2. Earthquake resistant design. I. Structural Engineering Institute. Dynamic Analysis of Nuclear Structures Subcommittee. II. Structural Engineering Institute. Nuclear Standards Committee. III. Title.

TK9152.163.S77 2005 621.48'32---dc22

2005005011

Published by American Society of Civil Engineers 1801 Alexander Bell Drive Reston, Virginia 20191 www.pubs.asce.org

Any statements expressed in these materials are those of the individual authors and do not necessarily represent the views of ASCE, which takes no responsibility for any statement made herein. No reference made in this publication to any specific method, product, process or service constitutes or implies an endorsement, recommendation, or warranty thereof by ASCE.

ASCE makes no representation or warranty of any kind, whether express or implied, concerning the accuracy, completeness, suitability, or utility of any information, apparatus, product, or process discussed in this publication, and assumes no liability therefore. This information should not be used without first securing competent advice with respect to its suitability for any general or specific application. Anyone utilizing this information assumes all liability arising from such use, including but not limited to infringement of any patent or patents.

ASCE and American Society of Civil Engineers—Registered in U.S. Patent and Trademark Office.

Photocopies: Authorization to photocopy material for internal or personal use under circumstances not falling within the fair use provisions of the Copyright Act is granted by ASCE to libraries and other users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of \$25.00 per article is paid directly to CCC, 222 Rosewood Drive, Danvers, MA 01923. The identification for this book is 0-7844-0762-2/05/ \$25.00. Requests for special permission or bulk copying should be addressed to Permissions & Copyright Dept., ASCE.

Copyright © 2005 by the American Society of Civil Engineers. All Rights Reserved. Library of Congress Catalog Card No.: 2005005011 ISBN 0-7844-0762-2 Manufactured in the United States of America.

STANDARDS

In April 1980, the Board of Direction approved ASCE Rules for Standards Committees to govern the writing and maintenance of standards developed by the Society. All such standards are developed by a consensus standards process managed by the Codes and Standards Activities Committee. The consensus process includes balloting by the Balanced Standards Committee, which is composed of Society members and nonmembers, balloting by the membership of ASCE as a whole, and balloting by the public. All standards are updated or reaffirmed by the same process at intervals not exceeding 5 years.

The following Standards have been issued:

ANSI/ASCE 1-82 N-725 Guideline for Design and Analysis of Nuclear Safety Related Earth Structures

- ANSI/ASCE 2-91 Measurement of Oxygen Transfer in Clean Water
- ANSI/ASCE 3-91 Standard for the Structural Design of Composite Slabs and ANSI/ASCE 9-91 Standard Practice for the Construction and Inspection of Composite Slabs
- ASCE 4-98 Seismic Analysis of Safety-Related Nuclear Structures
- Building Code Requirements for Masonry Structures (ACI 530-02/ASCE 5-02/TMS 402-02) and Specifications for Masonry Structures (ACI 530.1-02/ASCE 6-02/TMS 602-02)
- SEI/ASCE 7-02 Minimum Design Loads for Buildings and Other Structures
- ANSI/ASCE 8-90 Standard Specification for the Design of Cold-Formed Stainless Steel Structural Members
- ANSI/ASCE 9-91 listed with ASCE 3-91
- ASCE 10-97 Design of Latticed Steel Transmission Structures
- SEI/ASCE 11-99 Guideline for Structural Condition Assessment of Existing Buildings

ANSI/ASCE 12-91 Guideline for the Design of Urban Subsurface Drainage

ASCE 13-93 Standard Guidelines for Installation of Urban Subsurface Drainage

ASCE 14-93 Standard Guidelines for Operation and Maintenance of Urban Subsurface Drainage

ASCE 15-98 Standard Practice for Direct Design of Buried Precast Concrete Pipe Using Standard Installations (SIDD)

ASCE 16-95 Standard for Load and Resistance Factor Design (LRFD) of Engineered Wood Construction

ASCE 17-96 Air-Supported Structures

ASCE 18-96 Standard Guidelines for In-Process Oxygen Transfer Testing

ASCE 19-96 Structural Applications of Steel Cables for Buildings

- ASCE 20-96 Standard Guidelines for the Design and Installation of Pile Foundations
- ASCE 21-96 Automated People Mover Standards— Part 1
- ASCE 21-98 Automated People Mover Standards— Part 2
- ASCE 21-00 Automated People Mover Standards— Part 3
- SEI/ASCE 23-97 Specification for Structural Steel Beams with Web Openings
- SEI/ASCE 24-98 Flood Resistant Design and Construction
- ASCE 25-97 Earthquake-Actuated Automatic Gas Shut-Off Devices
- ASCE 26-97 Standard Practice for Design of Buried Precast Concrete Box Sections
- ASCE 27-00 Standard Practice for Direct Design of Precast Concrete Pipe for Jacking in Trenchless Construction
- ASCE 28-00 Standard Practice for Direct Design of Precast Concrete Box Sections for Jacking in Trenchless Construction
- SEI/ASCE/SFPE 29-99 Standard Calculation Methods for Structural Fire Protection
- SEI/ASCE 30-00 Guideline for Condition Assessment of the Building Envelope
- SEI/ASCE 31-03 Seismic Evaluation of Existing Buildings
- SEI/ASCE 32-01 Design and Construction of Frost-Protected Shallow Foundations
- EWRI/ASCE 33-01 Comprehensive Transboundary International Water Quality Management Agreement
- EWRI/ASCE 34-01 Standard Guidelines for Artificial Recharge of Ground Water
- EWRI/ASCE 35-01 Guidelines for Quality Assurance of Installed Fine-Pore Aeration Equipment
- CI/ASCE 36-01 Standard Construction Guidelines for Microtunneling
- SEI/ASCE 37-02 Design Loads on Structures During Construction
- CI/ASCE 38-02 Standard Guideline for the Collection and Depiction of Existing Subsurface Utility Data
- EWRJ/ASCE 39-03 Standard Practice for the Design and Operation of Hail Suppression Projects
- ASCE/EWRI 40-03 Regulated Riparian Model Water Code
- ASCE/EWRI 42-04 Standard Practice for the Design and Operation of Precipitation Enhancement Projects
- ASCE/SEI 43-05 Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities
- ASCE/EWRI 44-05 Standard Practice for the Design and Operation of Supercooled Fog Dispersal Projects

CONTENTS

Foreword	ix
Acknowledgments	x
Acronyms/Notation	xi
Definitions	xii

Standard

1.0	Introduction	
	1.1 Overview of the Seismic Design Criteria	
	1.2 Use of ASCE Standard 43-05 with Other Codes and Standards	
	1.3 Alternative Methods to Meet Intent of this Standard	
2.0	Earthquake Ground Motion	
	2.1 Seismic Hazard Evaluation	
	2.2 Development of DBE Ground Motion	
	2.2.1 Horizontal Ground Motion	
	2.2.2 Vertical Ground Motion	
	2.3 Method to Define the Design Response Spectra at Various Depths in the Site Profile	7
	2.4 Criteria for Developing Synthetic or Modified Recorded Time Histories	
3.0	Evaluation of Seismic Demand	
	3.1 Introduction	
	3.2 Linear Analysis	
	3.2.1 Linear Equivalent-Static Analysis	
	3.2.2 Linear Dynamic Analysis	
	3.3 Nonlinear Analysis	
	3.3.1 Nonlinear Static Analysis 1	
	3.3.2 Nonlinear Dynamic Analysis 1	
	3.4 Modeling and Input Parameters 1	
	3.4.1 Effective Stiffness of Reinforced Concrete Members 1	
	3.4.2 Mass 1	
	3.4.3 Damping Values for SSCs 1	
4.0	Evaluation of Structural Capacity 1	
	4.1 Structural Systems 1	
	4.1.1 Definitions 1	
	4.1.2 Acceptable Structural Systems for Nuclear Facilities	
	4.1.3 Prohibited Structural Systems 1	
	4.2 Structural Capacities 1	
	4.2.1 General 1	
	4.2.2 Reinforced Concrete 1	
	4.2.3 Capacity of Low-Rise Concrete Shear Walls 1	
	4.2.4 Structural Steel 1	
	4.2.5 Reinforced Masonry 1	
	4.3 Deformation and Rotation Capacities 1	
5.0	Load Combinations and Acceptance Criteria for Structures 1	
	5.1 Load Combinations 1	
	5.1.1 General	6
	5.1.2 Seismic Loading Combinations 1	6
	5.2 Acceptance Criteria 1	
	5.2.1 General	
	5.2.2 Strength Acceptance Criteria 1	
	5.2.3 Deformation Acceptance Criteria 1	9

6.0	Duc	tile Detailing Requirements	19
	6.1	Steel Structures	20
		6.1.1 Moment Frames	20
		6.1.2 Braced Frames	21
	6.2	Reinforced Concrete	21
		6.2.1 General	21
		6.2.2 Slab/Wall Moment Frame Systems	
		Anchorage	
7.0		cial Considerations	
		Rocking and Sliding of Unanchored Rigid Bodies	
	7.2	Building Sliding and Overturning	
		7.2.1 Building Sliding	
		7.2.2 Building Overturning	
	7.3	Seismic Separation	24
	7.4	Seismic Design Considerations for Foundation Elements	24
		7.4.1 Linear Analyses	24
		7.4.2 Nonlinear Analyses	24
		7.4.3 Special Provisions for Foundation Components	24
		7.4.4 Liquefaction Potential and Soil Strength Loss	24
	7.5	Unreinforced Masonry Used as Movable Partitions, Barriers, and Radiation Shielding .	25
	7.6	Provisions for Construction Effects	25
8.0	Equ	ipment and Distribution Systems	25
	8.1	Introduction	25
	8.2	Qualification by Analysis	26
		8.2.1 Seismic Analysis Methods	26
		8.2.2 Demand for Qualification by Analysis	26
		8.2.3 Capacity Using Qualification by Analysis	27
		8.2.4 Acceptance Criteria and Documentation for Qualification by Analysis	28
	8.3	Qualification by Testing and Experience Data	
		8.3.1 Tests and Experience Methods	28
		8.3.2 Demand for Qualification by Tests and Experience Data	
		8.3.3 Capacity Defined for Seismic Qualification by Tests and Experience Data	29
		8.3.4 Acceptance Criteria and Documentation for Qualification by	
		Tests and Experience Data	29
9.0	Seis	mic Quality Provisions	
		Design Verification and Independent Peer Review	
		9.1.1 Seismic Design Verification.	
		9.1.2 Independent Seismic Peer Review	
	9.2	Structural Observation, Inspection, and Testing	
		9.2.1 Structural Observations	
		9.2.2 Continuous and Periodic Inspections	
		9.2.3 Testing	
	9.3	Quality Assurance	
		9.3.1 Design Basis Documents	
		9.3.2 Design Procedures	

Appendix A

A.0 Approximate Methods for Sliding and Rocking of an Unanchored Rigid Body	33
A.1 Approximate Method for Sliding of an Unanchored Rigid Body	33
A.2 Approximate Method for Rocking of an Unanchored Rigid Body	33

Appendix B

B.0 Commentary on and Examples of Approximate Methods for Sliding and Rocking of an	
Unanchored Rigid Body	34
B.1 Approximate Method for Sliding of an Unanchored Rigid Body	34

B.2 Approximate Method for Rocking of an Unanchored Rigid Body
B.3 Example Problems: Rigid Body Rocking and Sliding
B.3.1 Rigid Body Rocking Example 3'
B.3.2 Rigid Body Sliding Example 4
References for Appendix B.0 4

Commentary

C1.0 Introduction	
C1.1 Overview of the Seismic Design Criteria	43
C1.2 Use of ASCE Standard 43-05 with Other Codes and Standards	43
C1.3 Alternative Methods to Meet Intent of this Standard	46
C1.3.1 Expected Factors of Safety Achieved by Seismic Acceptance Criteria	47
References for Section C1.0	49
C2.0 Earthquake Ground Motion	49
C2.2 Development of Design Basis Earthquake Ground Motion	49
C2.2.1 Horizontal Ground Motion	49
C2.2.2 Vertical Ground Motion	55
C2.3 Method to Define the Design Response Spectra at Various Depths	
in the Site Profile	56
C2.4 Criteria for Developing Synthetic or Modified Recorded Time Histories	57
References for Section C2.0	58
C3.0 Evaluation of Seismic Demand	
C3.3 Nonlinear Analysis	
C3.4 Modeling and Input Parameters	59
C3.4.1 Effective Stiffness of Reinforced Concrete Members	59
C3.4.3 Damping Values for SSCs	59
References for Section C3.0	
C4.0 Evaluation of Structural Capacity	60
C4.2 Structural Capacities	60
C4.2.3 Capacity of Low-Rise Concrete Shear Walls	60
References for Section C4.0	63
C5.0 Load Combinations and Acceptance Criteria for Structures	63
C5.1 Load Combinations	
C5.1.1 General	
C5.2 Acceptance Criteria	68
References for Section C5.0	
C6.0 Ductile Detailing Requirements	
C6.2.2 Slab/Wall Moment Frame Systems	
C7.0 Special Considerations	
C7.1 Rocking and Sliding of Unanchored Rigid Bodies	71
C7.2 Building Sliding and Overturning	71
C7.3 Seismic Separation	71
C7.5 Unreinforced Masonry Used as Movable Partitions, Barriers, and	
Radiation Shielding	
C7.6 Provisions for Construction Effects	72
References for Section C7.0	72
C8.0 Equipment and Distribution Systems	
References for Section C8.0	75
C9.0 Seismic Quality Provisions	
C9.1 Design Verification and Independent Peer Review	
C9.2 Structural Observation, Inspection, and Testing	
C9.3 Quality Assurance	
References for Section C9.0	77
Index	79

FOREWORD

Nuclear facilities are defined as facilities that process, store, or handle radioactive materials in a form and quantity that pose potential nuclear hazard to the workers, the public, or the environment. Due to the risk associated with such hazards, it is desirable that nuclear facilities have a lower probability that structural damage will be caused by earthquakes than do conventional facilities. This Standard provides seismic design criteria that are more stringent than normal building codes. The goal of this Standard is to ensure that nuclear facilities can withstand the effects of earthquake ground shaking with desired performance, expressed as probabilistic Target Performance Goals. Design for other earthquake effects (such as differential fault displacement and seismic slope instability) are not covered by this Standard. This Standard is intended for use in the design of new facilities and is to be used in conjunction with other national consensus standards specified herein.

This Standard can also be used for facilities handling explosives, toxic materials, or chemicals; for facilities where safety, mission, or investment protection are concerns; and where more stringent seismic criteria than provided by building codes are desired.

This Standard is intended to be used with ASCE 4, which provides criteria for seismic analysis of safety related nuclear facilities Structures, Systems and Components (SSCs); ACI 349 for concrete structures; AISC standards for steel structures; ASME standards for mechanical systems and components; IEEE standards for electrical systems and components; and ASCE 7 for minimum non-seismic design loads for buildings and other structures. This ASCE Standard specifies seismic load combinations.

This Standard uses the Target Performance Goal-based seismic design approach documented in U.S. Department of Energy Natural Phenomena Hazards (NPH) standards. This Standard is also consistent with the philosophy used in the National Earthquake Hazard Reduction Program (NEHRP) for seismic mitigation of new and existing facilities. The Standard uses input from ANSI/ANS Standard 2.26 to assign Seismic Design Categories (SDCs)* to SSCs. It provides requirements for determining design basis seismic loading using input from ANSI/ANS Standards 2.27 and 2.29, and it prescribes design criteria that are tied to structural Limit States.

ANS 2.26 employs a graded approach to ensure that the level of conservatism and rigor in design is appropriate for facility characteristics, such as hazards to

* In this Standard, the term "Seismic Design Category" has a different meaning than in the International Building Code and ASCE 7. workers, the public, and the environment. ANS 2.26 specifies five SDCs for classifying SSCs based on their importance and failure consequences. Each SSC has a specified numerical Target Performance Goal. ANS 2.26 also provides descriptive criteria to assist the designer in selecting an appropriate Limit State for use in the design of SSCs. Four Limit States are defined—A, B, C, and D—where A is short of collapse and D is essentially elastic behavior. This Standard specifies design criteria for load combinations, including earthquake ground shaking (i.e., stress, displacement, and ductility limits), such that these Limit States are not exceeded.

The combination of SDC and Limit State defines the Seismic Design Basis (SDB) for each SSC. Thus, an SSC with SDB-3C would use criteria for SDC-3 and Limit State C. A total of 20 SDBs are defined in ANS 2.26 that can match seismic design criteria to SSC safety function and importance, implementing a graded approach.

SDBs defined by SDC 1 and 2 are covered by the approach presented in ASCE 7. This Standard presents design and analysis requirements for SDBs defined by SDC 3, 4, and 5 and all Limit States. The approach presented for SDC 3, 4, and 5 has been adapted from that used in the U.S. Department of Energy Standard 1020, ASCE 4, and the U.S. Nuclear Regulatory Commission Standard Review Plan (NUREG-0800).

The intended user of this Standard is the designer or analyst involved in the design of a new nuclear structure, system, or component. The Standard is intended to provide a rational basis for the performancebased, risk-consistent seismic design of SSCs in nuclear facilities. Designers once were initiated into the field of probabilistic design by being taught that seismic performance categories for SSCs were established by DOE-STD-1020-94 and subsequent revisions. Each performance category was tied to a probabilistic performance goal that represented a target annual frequency of seismic-induced failure. However, these earlier design codes did not allow designers the freedom to select a Limit State (the permissible deformation limit for the SSC established from functional considerations). There has been a movement within the structural engineering community to give designers freedom to select the desired state of the facility following the Design Basis Earthquake (DBE, defined in ATC-40, FEMA 273 and FEMA 356, SEAOC-Vision 2000, and ASCE 31). The traditional design Limit State of providing life safety can now be expanded to include nuclear confinement, remain fully functional, or minimize operational loss.

ACKNOWLEDGMENTS

The American Society of Civil Engineers acknowledges the work of the Nuclear Standards Committee of the Codes and Standards Activities Division of the Structural Engineering Institute. This group comprises individuals from many backgrounds, including consulting engineering, law, research, construction industry, education, government, design, and private practice. This Standard was prepared through the consensus standards process by balloting in compliance with procedures of the Codes and Standards Activities Committee of the American Society of Civil Engineers. Those individuals who served on the Nuclear Standards Committee are:

Nuclear Standards Committee

S. BolourchiR. KennedyJ. CostelloW. La PayC. CostantinoR. C. Murray, ChairF. FengT. Satyan-SharmaO. GurbuzP. WangA. HadjianR. Kassawara

Working Group for Seismic Design Criteria for

Nuclear Facilities	
G. Bagchi	D. P. Moore
H. Chander	R. C. Murray
C. J. Costantino	D. Neihoff
M. D. Davister	T. A. Nelson, Cochair
R. C. Guenzler	M. E. Nitzel
O. Gurbuz	D. A. Nuta, Cochair
A. H. Hadjian	J. W. Reed
Q.A. Hossain	M. J. Russell
T.W. Houston	M. W. Salmon
R. J. Hunt	S. K. Sen
R.P. Kennedy	S. A. Short
L. Manuel	W. H. White
G. E. Mertz	

Dynamic Analysis of Nuclear Structures

Dynamic Analysis of Nuclear Structures			
Subcommittee			
G. Bagchi	D. P. Moore		
H. Chander	R. C. Murray, Chair		
C. J. Costantino	D. Neihoff		
M. D. Davister	T. Nelson		
R. C. Guenzler	M. E. Nitzel		
O. Gurbuz	D. Nuta		
A. H. Hadjian	J. W. Reed		
Q.A. Hossain	M. J. Russell		
T.W. Houston	M. W. Salmon		
R. J. Hunt	S. K. Sen		
R.P. Kennedy	S. A. Short		
L. Manuel	W. H. White		
G. E. Mertz			

ACRONYMS/NOTATION

A_I	Arias intensity	NEHRP	National Earthquake Hazard Reduction
A_R	Ground motion ratio		Program
ACI	American Concrete Institute	NEMA	National Electrical Manufacturer
AISC	American Institute of Steel Construction		Association
AISI	American Iron and Steel Institute	NEP	Non-Exceedance Probability
ANS	American Nuclear Society	NFPA	National Fire Protection Association
ANSI	American National Standards Institute	NPH	Natural Phenomena Hazards
APE	Annual probability of exceedance	NPP	Nuclear Power Plant
ASD	Allowable Stress Design	NRC	U.S. Nuclear Regulatory Commission
ASME	American Society of Mechanical	PC	Performance Category
	Engineers	P_F	Mean annual frequency of unacceptable
ATC	Applied Technology Council	-	performance (Target Performance
AWWA	American Water Works Association		Goal)
B&PVC	Boiler and Pressure Vessel Code	PGA	Peak Ground Acceleration; A is also used
С	Capacity determined in accordance with		for Peak Ground Acceleration
	building codes	PSD	Power Spectral Density
CMAA	Crane Manufacturer Association of	PSHA	Probabilistic Seismic Hazard Assessment
	America	QA	Quality Assurance
COV	Coefficient of variation	$\tilde{R_P}$	Probability Ratio: H_D / P_F
D	Total demand; also, distance to	RBS	Reduced Beam Sections
	controlling earthquake; also, peak	RRS	Required Response Spectra
	ground displacement	SA_f	Spectral Acceleration at natural
D_{NS}	Non-seismic demand	,	frequency, f
D_S	Elastic seismic demand	SAPEAK	Peak Spectral Acceleration
DBE	Design Basis Earthquake	SAM	Seismic Anchor Motion
DF	Design Factor	SDB	Seismic Design Basis
DOE	U.S. Department of Energy	SDC	Seismic Design Category* (SDC-1,
DRS	Design Earthquake Response Spectrum:		SDC-2, SDC-3, SDC-4, or SDC-5)
	$DRS = DF \times UHRS$	SF	Seismic Scale Factor
EBF	Eccentrically Braced Frame	SMACNA	Sheet Metal and Air-Conditioning
EES	Earthquake Experience Spectrum		Contractors National Association
ENA	Eastern North America	SMRF	Special Moment-Resisting Frame
EUS	Eastern United States	SQUG	Seismic Qualification Utility Group
EPRI	Electric Power Research Institute	SRSS	Square root sum of squares
LRFD	Load and Resistance Factor Design	SSC	Structure, System, or Component
F_{μ}	Inelastic energy absorption factor	SSE	Safe Shutdown Earthquake
$F_{\mu S}$	System inelastic energy absorption factor	SSI	Soil-Structure Interaction
FEMA	Federal Emergency Management	T_{sm}	Strong motion duration
	Agency	TES	Test Experience Spectrum
FS	Factor of Safety	TRS	Test Response Spectrum
GIP	Generic Implementation Procedure	UHRS	Uniform Hazard Response Spectra
H_D	Mean annual hazard exceedance	USGS	U.S. Geological Survey
	frequency: $H_D = R_P \times P_F$	V	Peak Ground Velocity
IBC	International Building Code	ZPA	Zero Period Acceleration
IEEE	The Institute of Electrical and Electronics	α	Parameter used to determine Design Factor
K	Engineers, Inc. Capacity increase factor	<i>4</i>	Capacity reduction factor
r LS	Limit State (A, B, C, or D)	ϕ	Capacity reduction racion
LS M	Magnitude of controlling earthquake		
	Nyquist frequency		
N_y	ryquist nequency		