Prestressed Concrete Transmission Pole Structures

Recommended Practice for Design and Installation

ASCE Manuals and Reports on Engineering Practice No. 123

Prestressed Concrete Transmission Pole Structures

Recommended Practice for Design and Installation

Prepared by the Task Committee on Concrete Transmission Pole Structures of the Committee of Electrical Transmission Structures of the Structural Engineering Institute of the American Society of Civil Engineers

> Edited by Wesley J. Oliphant, P.E., and Douglas C. Sherman, P.E.

Library of Congress Cataloging-in-Publication Data

Prestressed concrete transmission pole structures: recommended practice for design and installation / prepared by the Task Committee on Concrete Transmission Pole Structures, of the Committee of Electrical Transmission Structures, of the Structural Engineering Institute, of the American Society of Civil Engineers; edited by Wesley J. Oliphant, Douglas C. Sherman.

p. cm. — (ASCE manuals and reports on engineering practice; no. 123) Includes bibliographical references and index.

ISBN 978-0-7844-1211-4 (pbk.: alk. paper) — ISBN 978-0-7844-7679-6 (ebook)

Electric lines—Poles and towers—Design and construction.
 Electric lines—Poles and towers—Installation.
 Prestressed concrete poles—Design and construction.
 Prestressed concrete poles—Installation.
 Oliphant, Wesley J.
 Sherman, Douglas C. III. Structural Engineering Institute. Task Committee on Concrete Pole Structures.

TA683.5.P65P74 2012 621.319'22—dc23

2012010308

Published by American Society of Civil Engineers 1801 Alexander Bell Drive Reston, Virginia 20191 www.asce.org/pubs

Any statements expressed in these materials are those of the individual authors and do not necessarily represent the views of ASCE, which takes no responsibility for any statement made herein. No reference made in this publication to any specific method, product, process, or service constitutes or implies an endorsement, recommendation, or warranty thereof by ASCE. The materials are for general information only and do not represent a standard of ASCE, nor are they intended as a reference in purchase specifications, contracts, regulations, statutes, or any other legal document.

ASCE makes no representation or warranty of any kind, whether express or implied, concerning the accuracy, completeness, suitability, or utility of any information, apparatus, product, or process discussed in this publication, and assumes no liability therefor. This information should not be used without first securing competent advice with respect to its suitability for any general or specific application. Anyone utilizing this information assumes all liability arising from such use, including but not limited to infringement of any patent or patents.

ASCE and American Society of Civil Engineers—Registered in U.S. Patent and Trademark Office.

Photocopies and permissions. Permission to photocopy or reproduce material from ASCE publications can be obtained by sending an e-mail to permissions@asce.org or by locating a title in ASCE's online database (http://cedb.asce.org) and using the "Permission to Reuse" link.

Cover photographs courtesy of Valmont Newmark. Reproduced with permission.

Copyright © 2012 by the American Society of Civil Engineers. All Rights Reserved.
ISBN 978-0-7844-1211-4 (paper)
ISBN 978-0-7844-7679-6 (e-book)
Manufactured in the United States of America.

18 17 16 15 14 13 12 1 2 3 4 5

MANUALS AND REPORTS ON ENGINEERING PRACTICE

(As developed by the ASCE Technical Procedures Committee, July 1930, and revised March 1935, February 1962, and April 1982)

A manual or report in this series consists of an orderly presentation of facts on a particular subject, supplemented by an analysis of limitations and applications of these facts. It contains information useful to the average engineer in his or her everyday work, rather than findings that may be useful only occasionally or rarely. It is not in any sense a "standard," however; nor is it so elementary or so conclusive as to provide a "rule of thumb" for nonengineers.

Furthermore, material in this series, in distinction from a paper (which expresses only one person's observations or opinions), is the work of a committee or group selected to assemble and express information on a specific topic. As often as practicable, the committee is under the direction of one or more of the Technical Divisions and Councils, and the product evolved has been subjected to review by the Executive Committee of the Division or Council. As a step in the process of this review, proposed manuscripts are often brought before the members of the Technical Divisions and Councils for comment, which may serve as the basis for improvement. When published, each work shows the names of the committees by which it was compiled and indicates clearly the several processes through which it has passed in review in order that its merit may be definitely understood.

In February 1962 (and revised in April 1982) the Board of Direction voted to establish a series titled, "Manuals and Reports on Engineering Practice," to include the Manuals published and authorized to date, future Manuals of Professional Practice, and Reports on Engineering Practice. All such Manual or Report material of the Society would have been refereed in a manner approved by the Board Committee on Publications and would be bound, with applicable discussion, in books similar to past Manuals. Numbering would be consecutive and would be a continuation of present Manual numbers. In some cases of reports of joint committees, bypassing of Journal publications may be authorized.

MANUALS AND REPORTS ON ENGINEERING PRACTICE CURRENTLY AVAILABLE

No.	Title	No.	Title
28 45	Hydrology Handbook, Second Edition How to Select and Work Effectively with Consulting Engineers: Getting	100	Groundwater Contamination by Organic Pollutants: Analysis and Remediation
50	the Best Project, 2012 Edition Planning and Design Guidelines for	101	Underwater Investigations: Standard Practice Manual
00	Small Craft Harbors, Revised Edition	102	Design Guide for FRP Composite
54	Sedimentation Engineering, Classic Edition	103	Connections Guide to Hiring and Retaining Great
60	Gravity Sanitary Sewer Design and		Civil Engineers
62	Construction, Second Edition Existing Sewer Evaluation and Rehabilitation, Third Edition	104	Recommended Practice for Fiber- Reinforced Polymer Products for Overhead Utility Line Structures
66	Structural Plastics Selection Manual	105	Animal Waste Containment in Lagoons
67	Wind Tunnel Studies of Buildings and	106	Horizontal Auger Boring Projects
	Structures	107	Ship Channel Design and Operation
71	Agricultural Salinity Assessment and Management, Second Edition	108	Pipeline Design for Installation by Horizontal Directional Drilling
73	Quality in the Constructed Project: A	109	Biological Nutrient Removal (BNR)
, ,	Guide for Owners, Designers, and Constructors, Third Edition	10)	Operation in Wastewater Treatment
74	Guidelines for Electrical Transmission Line Structural Loading, Third Edition	110	Sedimentation Engineering: Processes Measurements, Modeling, and Practice
77	Design and Construction of Urban Stormwater Management Systems	111	Reliability-Based Design of Utility Pole Structures
79	Steel Penstocks, Second Edition	112	Pipe Bursting Projects
81	Guidelines for Cloud Seeding to	113	Substation Structure Design Guide
	Augment Precipitation, Second Edition	114	Performance-Based Design of Struc- tural Steel for Fire Conditions
85	Quality of Ground Water: Guidelines	115	Pipe Ramming Projects
	for Selection and Application of Frequently Used Methods	116	Navigation Engineering Practice and Ethical Standards
91	Design of Guyed Electrical Transmis-	117	Inspecting Pipeline Installation
	sion Structures	118	Belowground Pipeline Networks for
92	Manhole Inspection and Rehabilita-		Utility Cables
	tion, Second Edition	119	Buried Flexible Steel Pipe: Design and
94	Inland Navigation: Locks, Dams, and	420	Structural Analysis
06	Channels	120	Trenchless Renewal of Culverts and
96	Guide to Improved Earthquake Perfor- mance of Electric Power Systems	121	Storm Sewers Safe Operation and Maintenance of
97	Hydraulic Modeling: Concepts and Practice	122	Dry Dock Facilities Sediment Dynamics upon Dam
98	Conveyance of Residuals from Water	144	Sediment Dynamics upon Dam Removal
	and Wastewater Treatment	123	Prestressed Concrete Transmission
99	Environmental Site Characterization and Remediation Design Guidance		Pole Structures: Recommended Practice for Design and Installation

COMMITTEE ON ELECTRICAL TRANSMISSION STRUCTURES TASK COMMITTEE ON CONCRETE POLE STRUCTURES

Cochairs: Wesley J. Oliphant, P.E.

Members: Frank W. Agnew, P.E.

Melanie Bragdon, P.E. Byron E. Chandler, P.E. Dana R. Crissey, P.E. William Y. Ford, P.E., *Vice*

Chair

Fouad H. Fouad, Ph.D., P.E. Meihuan Z. Fulk, Ph.D., P.E.

Bryan J. Hanft, P.E.

Jaber K. Jaber

Douglas C. Sherman, P.E.

Paul M. Legrand II, P.E. Herbert H. Payne Jr., P.E. Archie D. Pugh, P.E. David H. Seligson, P.E. Kenneth L. Sharpless, P.E.,

Secretary

David D. Villarreal, P.E. John L. Webb, P.E.

C. Jerry Wong, Ph.D., P.E.

BLUE RIBBON REVIEW PANEL

Jon M. Ferguson, P.E., POWER Engineers, Inc.

John P. Gervais, P.E., Valmont-Newmark

Paul C. Jakob, P.E., Progress Energy Florida

Robert Mitchell (Mitch) Currah, P.E., Lower Colorado River Authority (Retired)

Garold D. Oberlender, Ph.D, P.E., Oklahoma State University

Mahesh Pandey, University of Waterloo

Maria Anna Polak, Ph.D., P.Eng., University of Waterloo

Morris Stover, P.E., Kiewit Power Engineers Co.

F. Blake Tucker, P.E., American Electric Power

Kenneth Wright, P.E., Tucson Electric Power Co.

CONTENTS

PR	REFACE	xiii
1	STRUCTURAL CONFIGURATIONS AND	
	POLE APPLICATIONS	1
	Configurations	2
	Electrical Utility Applications	7
	References	13
2	INITIAL CONSIDERATIONS	15
	Physical Characteristics	15
	Loads	15
	Deflection	16
	Transportation and Erection	16
	Attachments	16
	Guying	17
	Climbing and Maintenance	18
	Grounding	19
	Testing	20
	References	21
3	MATERIALS	23
	Concrete Materials	23
	Properties of Concrete	24
	Steel Reinforcement	24
	Miscellaneous Materials	27
	References	28
4	DESIGN	31
	Design Considerations	32
	Multisection Concrete Poles	34
	Hybrid (Steel and Concrete) Poles	36

	Reverse Taper Poles Concrete Pole Design as Related to Wood Pole Equivalency Design Criteria Design Methodology References	37 38 39 42 48
5	CONNECTIONS Methods of Connection Connection Design Considerations Connection Failure Modes Installation Considerations References	51 53 59 63 67 67
6	FOUNDATIONS	69 70 72 73
7	MANUFACTURING AND QUALITY ASSURANCE Design and Drawings Manufacturing Process Quality Assurance References	75 75 76 80 83
8	ASSEMBLY AND ERECTION Hauling and Access Handling Framing Field Drilling Field Cutting Erection Weight Considerations Climbing Storage References	85 88 88 91 93 93 99 99
9	INSPECTION, MAINTENANCE, AND REPAIR	101 101 103 107
10	STRUCTURE TESTING	109 110 111 111 112

CONTENTS

хi

Test Loads	112
Load Application	112
Loading Procedure	113
Load Measurement	113
Deflection	113
Failures	114
Report	115
Special Considerations for Horizontal Testing	115
APPENDIX I SAMPLE PURCHASER TECHNICAL	
SPECIFICATIONS FOR SPUN-CAST PRESTRESSED	
CONCRETE POLES FOR TRANSMISSION AND	
DISTRIBUTION STRUCTURES	119
APPENDIX II SAMPLE PURCHASER TECHNICAL	
SPECIFICATIONS FOR STATIC-CAST PRESTRESSED	
CONCRETE POLES FOR TRANSMISSION AND	
DISTRIBUTION STRUCTURES	131
APPENDIX III ADDITIONAL INFORMATION FOR	
PURCHASER'S SPECIFICATION FOR STATIC- AND SPUN-	
CAST PRESTRESSED CONCRETE POLES FOR	
TRANSMISSION AND DISTRIBUTION STRUCTURES	143
APPENDIX IV METHODOLOGY FOR SELECTING AN	
APPROPRIATE CONCRETE COMPRESSIVE STRENGTH	
TO BE USED IN THE DESIGN OF CONCRETE POLES	149
GLOSSARY	151
NOTATION	155
INDEX	157

PREFACE

The purpose of this manual is to provide the reader with a basic knowledge of the principles and methods for the design, manufacturing, and use of prestressed spun- and static-cast concrete poles for overhead utility line structures. This manual is the result of a multiyear collaborative effort by engineers from electric utilities, consulting firms, and manufacturers engaged in the design and application of these structures.

Since the publication in 1987 of the ASCE *Guide for the Design and Use of Concrete Poles* and the 1994 ASCE-PCI Committee Report "Guide for the Design of Prestressed Concrete Poles," significant advancements and innovations have been realized in concrete pole design and manufacturing technologies. These advancements have propelled the use of concrete poles into an ever-increasing and significant role in the design and construction of overhead utility line structures.

Technological advances have occurred in three key areas. First, the types and quality of the raw materials used in the production of high-performance concrete have improved dramatically. Second, advanced manufacturing methods and equipment to produce high-quality, stronger, and longer length poles are being used. Third, with meaningful research and development (R&D) investment in the technology, significant and innovative enhancements to the engineering design technology of concrete poles are being developed. In addition to their use in distribution, subtransmission, or wood replacement applications, concrete poles are being designed and used in major transmission line projects up to and including 345kV and 500kV transmission lines.

Following is a brief summary of this manual's content:

Structural Configurations and Pole Applications: A variety of structural and phase wire configurations are needed by utilities to address different power line environments. A number of arrangements are