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based on comparison with tested systems. Variance from tested systems 
must be carefully considered to ensure that modi�cations do not 
invalidate forced entry test-based rating and/or acceptance. Most often, 
any structural changes to the system, including geometric and material 
variation, as well as connection detailing require retesting or certi�cation 
of the modi�ed system.

Design for ballistic protection is typically performed by specifying the 
use of components that have been tested according to the available test 
standards discussed in Chapter 10. However, for steel or other metal 
components, design thickness can be estimated using design methods 
found in UFC 4-023-07 (DoD 2008) and DOE/TIC-11268. The UFC 
document also provides geometric design guidance to limit sight lines to 
protected spaces and means of defeating high caliber ballistic threats. 
Testing is still necessary in most cases to certify a particular component or 
element can provide the necessary ballistic resistance.

4.10.1.1 Forced Entry Resistance. In general, forced entry protection 
is achieved by utilizing layers of materials that are dif�cult to cut, break, 
or remove with hand or power tools and are appropriately secured to 
the building structure. Attachments should be located on the interior to 
reduce the ability of adversaries to defeat them. The ability of a building 
surface to allow for adequate delay time against a forced entry depends 
on many factors including attack tools, number of hits and receiving 
element material strength, surface thickness, solidity ratio, and 
reinforcement con�guration. RC, metal security mesh, and polycarbonate 
systems can provide a notable amount of forced-entry resistance. 
Reducing the spacing of reinforcement and mesh sizes tends to increase 
resistance to forced entry.

Design for forced entry typically focuses on providing materials that are 
dif�cult to penetrate with hand and/or power tools of concern and locating 
vulnerable hardware such as anchors, fasteners, hinges, and latches on the 
protected side of the component to increase the time it would take to make 
a passable opening in the component. Standardized delay time ranging 
from 5-, 15-, and 60-min corresponds to targeted LOPs. The level of forced 
entry resistance required depends on the established design basis threats 
and LOP desired for the facility.

UFC 4-020-02FA (DoD 2005) provides information relevant to the tactics 
and protection strategies for forced entry. For medium to very high levels 
of protection, the UFC requires the use of wall construction that provides 
the delay time (i.e., minimum to maximum response time) corresponding 
to the threat severity level (i.e., hand/power tools, thermal, and explosives). 
Refer to Chapter 2 for further discussion of design basis forced-entry 
threats and tactics.
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4.10.1.2 Ballistic Resistance. The ability of a building surface to provide 
adequate resistance to ballistic attack depends on many factors including 
the ballistic attack characteristics, the surface’s material strength, thickness, 
solidity ratio, and reinforcement con�guration. Ballistic and fragment 
penetration resistance is usually achieved through the use of one or more 
layers of material that can adequately resist projectiles of the desired 
caliber. Materials can include specialty glass, composite �bers, magnesium, 
ceramics, polymers (e.g., polycarbonate and lexan), steel, aluminum, and 
titanium. Typically, the determination of ballistic rating for a speci�c 
construction is determined through testing; however, there is not enough 
testing information available for public use to guide that determination. 
Few published resources provide guidance to Physical Security 
professionals regarding the speci�cation of ballistic resistance.

UFC 4-023-07 (DoD 2008) provides comprehensive coverage of 
protective design measures for resistance to direct �re weapons and 
correlates threat level to weapon’s caliber and provides recommendations 
for using various construction materials to achieve different levels of 
protection. The UFC provides guidance based on existing data and 
calculations for construction required to resist typical ballistics threats. The 
current version of this document is available for public release through the 
Whole Building Design Guide website. Various chapters of UFC 4-020-
02FA (DoD 2005) provide similar recommendations for minimum thickness 
of various protective materials for different threat severity levels (i.e., low 
to very high). UL 752 identi�es 9 distinct ratings (i.e., protection, levels 1 
to 8 + 12-gauge) that correspond to ammunition calibers ranging from 
9 mm full metal jacket bullet to 12-gauge lead slug.

As previously discussed in Chapter 2, Sandia National Laboratories 
published a summary of empirical penetration equations that can be used 
to predict penetration depth for soil, rock, and concrete. The US Army has 
also developed the Thor equations that can describe ballistic penetration 
for various metals. The necessary penetration resistance depends on the 
design basis ballistic threats of concern and the desired LOP for the facility.

4.10.2 Levels of Protection and Performance Criteria

Levels of protection for ballistics and forced-entry range from low levels 
of protection to high levels of protection. At the lower levels of protection, 
the primary focus tends to be on blocking lines of sight of critical areas and 
targets. At medium to higher levels of protection, the criteria attempt to 
provide layers of penetration and hardening to mitigate or stop the design 
basis threats. Levels of Protection for Ballistic Resistance (BR) are 
predominantly based on the guidance provided in UFC 4-023-07 (DoD 
2008). As an example, for a medium LOP, the objective is to prevent the 

https://www.normsplash.com/ASCE/121154487/Structural-Design-for-Physical-Security-State-of-the-Practice?src=spdf


220 STRUCTURAL DESIGN FOR PHYSICAL SECURITY

projectile from perforating through the wall thickness and for it to be 
arrested within the wall without causing spalling on its inside (i.e., 
protected side) surface.

4.10.3 Analytical and Testing-Based Design Approaches

There are a limited set of design equations available for designing to 
mitigate ballistic and forced-entry tactics. As noted previously, there are a 
number of design equations available to mitigate ballistic threats available 
in UFC 4-023-07. For forced-entry resistance, acceptable protection is 
determined predominantly through testing. However, preliminary design 
strategies could be utilized to provide components and systems with 
strengths equivalent to components and systems that have already been 
tested.

Typically, the determination of forced-entry and/or ballistic resistance 
rating are determined through testing. Only limited testing/rating 
information are published and available for public use, therefore, physical 
security professionals may have to resort to other sources of guidance, 
which are mostly government provided such as the DoS Compendium of 
Design Standards and the UFC 4-020-02FA (DoD 2005) security engineering 
series. For further details about applicable certi�cation and testing 
procedures for forced entry and ballistic resistance, refer to Chapter 10.

4.11  DESIGN, SPECIFICATIONS, AND CONSTRUCTABILITY 
CONSIDERATIONS

Protective design is most effectively applied as enhancements to a 
structural design that satis�es conventional gravity, wind, and seismic 
loading. By starting with a code-compliant design, the opportunities for an 
integrated design and the cost of protection are most easily identi�ed. In 
this manner, blast-speci�c detailing requirements and constructability 
considerations can be addressed in collaboration with the structural 
engineer for the project.

4.11.1 Design Issues

4.11.1.1 Proof of Concept. It is essential for a successful design that the 
blast consultant, working for the design team, perform proof-of-concept 
calculations on delegated design elements (i.e., façade systems, 
prefabricated trusses, etc.) to properly represent the intended design 
concept in the drawings and prove that an acceptable design solution is 
achievable. This proof-of-concept effort is very useful when reviewing 
contractor submissions and requests for changes.
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4.11.1.2 Structural Engineer Duties. The blast design engineer is 
responsible for providing all blast design-related information in the form 
of mark-ups to the code compliant design drawings and details, which are 
typically provided during the design development phase and back-checked 
during the construction documents phase. The Structural Engineer of 
Record (SEOR) is expected to continuously coordinate with the blast design 
engineer to ensure that he/she fully understand the project-speci�c blast 
protection requirements and their impacts on the structural design. 
Ultimately, the SEOR is responsible for incorporating all aspects of the 
blast-resistant design (i.e., notes, markups, details, and speci�cations) into 
the structural design package.

4.11.1.3 Coordination with Other Design Disciplines. For engineering 
projects involving blast-resistant design, it is the design manager 
responsibility to ensure that all disciplines of his design team are effectively 
coordinating with the blast design engineer to clearly understand the 
potential impacts on their design efforts. This coordination effort is very 
important to avoid potential design and construction problems that may 
arise at later times primarily because of the lack of understanding and/or 
coordination.

4.11.2 Performance Speci�cations

In general, blast hardening (i.e., enhancement or strengthening) is most 
effectively prescribed by the blast consultant for incorporation into design 
drawings; however, there may be elements of the design, such as pre-
manufactured trusses, that are delegated to contractors and their subs. In 
addition, steel beam reaction forces may be tabulated or de�ned in a note 
that contains an equation for different boundary conditions. The detailing 
of steel connections is most frequently performed by the steel fabricator 
and the notes should include all instructions required to prevent brittle 
modes of failure.

Performance speci�cations for the delegated design of stud wall systems 
and light gage construction must provide all the information needed to 
perform the dynamic analyses. Other important blast-resistant building 
components that are typically described using performance speci�cations 
are glazing, curtain walls, windows, doors, and louvers. In this case, the 
design criteria and performance requirements of these specialty 
components are conveyed to the manufacturers who are responsible for 
designing, fabricating, and sometime testing blast-resistant products that 
meet the design intent. Therefore, it is of the utmost importance for the 
design team to work with the blast engineer to develop performance 
speci�cations that properly document the project-speci�c requirements for 
each component in a clear and complete manner.
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4.11.3 Constructability Considerations

The SEOR is responsible for integrating blast hardening of structural 
components into their design documents and verifying constructability. 
Aside from dimensional con�icts that are resolved with the project team, 
constructability concerns often relate to the spacing of reinforcing bars 
within concrete sections, the steel connection details required to develop 
the member reaction forces and the welding of thick plate sections. The 
proposed protective design for design-build projects or projects with 
construction management and design assist services receive guidance 
from a contractor or fabricator’s perspective. In general, this should reduce 
the number of RFI or change orders during construction. Other projects 
rely on the experience and expertise of the SEOR, with more extensive 
construction administration services likely to occur.
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