
# **ALPEMA**

Third Edition 2010

## THE STANDARDS OF THE BRAZED ALUMINIUM PLATE-FIN HEAT EXCHANGER MANUFACTURERS' ASSOCIATION



No part of this publication may be included in another publication, including publications in electronic media, without prior permission from ALPEMA.

Copyright<sup>©</sup> 2010 by the Brazed Aluminium Plate-Fin Heat Exchanger Manufacturers' Association. All rights reserved.

Provided by IHS under license with ALPEMA

This is a preview. Click here to purchase the full publication.

Published by:

The Brazed Aluminium Plate-Fin Heat Exchanger Manufacturers' Association (ALPEMA)

www.alpema.org

## **MEMBERSHIP LIST 2010**

#### BRAZED ALUMINIUM PLATE-FIN HEAT EXCHANGER MANUFACTURERS' ASSOCIATION

| Chart Energy and Chemicals, Inc        | 2191 Ward Avenue,                                      |
|----------------------------------------|--------------------------------------------------------|
|                                        | La Crosse, Wisconsin 54601,                            |
|                                        | USA.                                                   |
|                                        | Tel: +1 608 787 3333                                   |
|                                        | Fax: +1 608 787 2141                                   |
|                                        | Email: <u>bahx@chartindustries.com</u>                 |
|                                        | http://www.chartindustries.com                         |
| Kobe Steel, Ltd                        | Machinery Business,                                    |
|                                        | Energy Systems Center,                                 |
|                                        | 2-3-1 Shinhama, Arai-cho,                              |
|                                        | Takasago-Shi, Hyogo-Ken,                               |
|                                        | 676-8670, Japan.                                       |
|                                        | Tel: +81 794 45 7144                                   |
|                                        | Fax: +81 794 45 7239                                   |
| http://www.kabala                      | Email: <u>alex@kobelco.com</u>                         |
| mip://www.kobeic                       | o.co.jp/english/machinery/products/ecmachinery/alex/   |
| Linde AG                               | Engineering Division,                                  |
|                                        | Schalchen Plant,                                       |
|                                        | D-83342 Tacherting,                                    |
|                                        | Germany.                                               |
|                                        | Tel: +49 8621 85 6294                                  |
|                                        | Fax: +49 8621 85 6622                                  |
|                                        | Email: plantcomponents@linde-le.com                    |
|                                        | http://www.linde-plantcomponents.com                   |
| Fives Cryo                             | 25 bis, rue du fort                                    |
|                                        | BP 87,                                                 |
|                                        | 88194 Golbey Cedex,                                    |
|                                        | France.                                                |
|                                        | Tel: +33 (0)3 29 68 00 00                              |
|                                        | Fax: +33 (0)3 29 31 22 18                              |
|                                        | Email: <u>fivescryogenie-exchangers@fivesgroup.com</u> |
|                                        | http://www.fivesgroup.com/FivesCryogenie               |
| Sumitomo Precision Products Co Limited | Thermal Energy Systems Engineering Department,         |
|                                        | 1-10 Fuso-cho, Amagasaki,                              |
|                                        | Hyogo Pref.,                                           |
|                                        | 660-0891, Japan.                                       |
|                                        | Tel: +81 6 6489 5867                                   |
|                                        | Fax: +81 6 6489 5879                                   |
|                                        | Email: <u>cryogen@spp.co.jp</u>                        |
|                                        | http://www.spp.co.jp                                   |

## PREFACE

This is the Third Edition of the Standards of the Brazed Aluminium Plate-Fin Heat Exchanger Manufacturers' Association (ALPEMA). It is the result of the work by a technical committee of all the Members to meet the objective of the Association to promote the quality and safe use of this type of heat exchanger. The Standards contain all relevant information for the specification, procurement, and use of Brazed Aluminium Plate-Fin Heat Exchangers.

The First Edition, published in 1994, was extremely successful and popular and the Second edition was published in 2000. The ALPEMA Members review the Standards every year to consider whether updates are required and what these should be. Two amendments to the Second Edition were issued as a result of these reviews. Changes in the industry, experience with using the Standards and feedback from Users has indicated that the time is right for the Third Edition. The additions and amendments that have been made are summarised here.

- 1. A new Chapter 9 has been added to cover cold boxes and block-in-shell heat exchangers.
- 2. Photographs of typical plate-fin designs have been added, and some figures have been redrawn for clarity.
- 3. Information is provided on two-phase distributors.
- 4. Guidance on flange design and transition joints is included.
- 5. Guidance on acceptable mercury levels is given.
- 6. New information on proper storage of Brazed Aluminium Plate-Fin Heat Exchangers, manifold assemblies, and the Manufacturer's scope of supply has been added.
- 7. Many small changes have been made to improve clarity.

Comments by Users of the Standards are welcomed.

#### NO WARRANTY EXPRESSED OR IMPLIED

The Standards herein are recommended by The Brazed Aluminium Plate-Fin Heat Exchanger Manufacturers' Association to assist Users, engineers and designers who specify, design and install Brazed Aluminium Plate-Fin Heat Exchangers. These Standards are based upon sound engineering principles, research and field experience in the manufacture, design, installation and use of these exchangers. These Standards may be subject to revision as further investigation or experience may show is necessary or desirable. Nothing herein shall constitute a warranty of any kind, expressed or implied, and warranty responsibility of any kind is expressly denied.

#### PLEDGE

ALPEMA members will conduct themselves fairly and honestly, always practicing within legal and legislative boundaries.

## Table of Contents

| LIST | OF FI | GURES                                                                        | vii      |
|------|-------|------------------------------------------------------------------------------|----------|
| LIST | OF TA | ABLES                                                                        | vii      |
| 1    | GEN   | ERAL DESCRIPTION AND NOMENCLATURE                                            | 1        |
|      | 1.1   | GENERAL DESCRIPTION                                                          | 1        |
|      |       | 1.1.1 Background                                                             | 1        |
|      |       | 1.1.2 Introduction                                                           | 1        |
|      |       | 1.1.3 Successful Applications for Brazed Aluminium Plate-Fin Heat            |          |
|      |       | Exchangers<br>1.1.4 Limits of Use - Maximum Working Temperature and Pressure | 1<br>3   |
|      |       | 1.1.5 Acceptable Fluids                                                      | 3        |
|      | 1.2   | NOMENCLATURE OF THE COMPONENTS                                               | 5        |
|      | 1.2   | 1.2.1 Components of an Exchanger                                             | 5        |
|      |       | 1.2.2 Components of Manifolded Exchangers                                    | 6        |
|      |       | 1.2.3 Module Construction                                                    | 6        |
|      |       | 1.2.4 Connection Options                                                     | 6        |
|      |       | 1.2.5 Header/Nozzle Configurations<br>1.2.6 Fin Corrugations                 | 7<br>9   |
|      |       | 1.2.7 Distributors                                                           | 9<br>10  |
|      |       | 1.2.8 Two-Phase Distributors                                                 | 12       |
|      |       | 1.2.9 Flow Arrangements                                                      | 14       |
| 2    | TOLI  | ERANCES                                                                      | 15       |
| 3    | GEN   | ERAL DESIGN, FABRICATION AND CONTRACTUAL INFORMATION                         | 18       |
|      | 3.1   | SHOP OPERATION                                                               | 18       |
|      | 3.2   | DESIGN CODE                                                                  | 18       |
|      | 3.3   | INSPECTION                                                                   | 18       |
|      | 5.5   | 3.3.1 Third Party Inspection                                                 | 18       |
|      |       | 3.3.2 Manufacturer's Inspection                                              | 18       |
|      |       | 3.3.3 Purchaser's Inspection                                                 | 18       |
|      | 3.4   | NAMEPLATE                                                                    | 18       |
|      |       | 3.4.1 Manufacturer's Nameplate                                               | 18       |
|      |       | 3.4.2 Purchaser's Nameplate                                                  | 19       |
|      | 3.5   | DRAWINGS AND CODE DATA REPORTS                                               | 19       |
|      |       | 3.5.1 Drawings Information                                                   | 19       |
|      |       | 3.5.2 Drawings Approval and Change<br>3.5.3 Drawings for Record              | 20<br>20 |
|      |       | 3.5.3 Drawings for Record<br>3.5.4 Proprietary Rights to Drawings            | 20<br>20 |
|      |       | 3.5.5 Code Data Reports                                                      | 20       |
|      | 3.6   | GUARANTEES                                                                   | 20       |
|      | 5.0   | 3.6.1 Thermal, Hydraulic and Mechanical Guarantees                           | 20       |
|      |       | 3.6.2 Consequential Damage                                                   | 21       |
|      |       | 3.6.3 Corrosion                                                              | 21       |
|      | 3.7   | PREPARATION OF BRAZED ALUMINIUM PLATE-FIN HEAT EXCHANGERS                    |          |
|      |       | FOR SHIPMENT                                                                 | 21       |
|      |       | 3.7.1 General                                                                | 21       |
|      |       | 3.7.2 Cleaning                                                               | 21       |
|      |       | (ii)                                                                         |          |

|      | <ul> <li>3.7.3 Drying</li> <li>3.7.4 Flange Protection</li> <li>3.7.5 Dummy Passages/Inactive Areas</li> <li>3.7.6 Pressurising</li> </ul>                                                                     | 21<br>21<br>21<br>21                   |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 3.8  | SCOPE OF SUPPLY                                                                                                                                                                                                | 22                                     |
| 3.9  | GENERAL CONSTRUCTION FEATURES<br>3.9.1 Supports<br>3.9.2 Lifting Devices                                                                                                                                       | 22<br>22<br>22                         |
| 3.10 | NONCONFORMITY RECTIFICATION<br>3.10.1 Introduction<br>3.10.2 Procedures and Documentation<br>3.10.3 Side-Bar-to-Sheet Joint Leak Rectification<br>3.10.4 Blocking of Layers<br>3.10.5 Other Rectification Work | 23<br>23<br>23<br>23<br>23<br>23<br>23 |
|      | ALLATION, OPERATION AND MAINTENANCE                                                                                                                                                                            | 24                                     |
| 4.1  | GENERAL                                                                                                                                                                                                        | 24                                     |
| 4.2  | LIFTING AND HANDLING                                                                                                                                                                                           | 24                                     |
| 4.3  | SUPPORT BEAMS 4.3.1 Support Insulation                                                                                                                                                                         | 24<br>25                               |
| 4.4  | SLIDING GUIDE FRAME                                                                                                                                                                                            | 25                                     |
| 4.5  | FIXING (MOUNTING) BOLTS                                                                                                                                                                                        | 28                                     |
| 4.6  | VENTING OF DUMMY/INACTIVE AREAS                                                                                                                                                                                | 30                                     |
| 4.7  | FIELD TESTING<br>4.7.1 Non-Destructive Testing<br>4.7.2 Proof Pressure Testing                                                                                                                                 | 30<br>30<br>31                         |
| 4.8  | INSULATION                                                                                                                                                                                                     | 31                                     |
| 4.9  | OPERATION<br>4.9.1 Start-up<br>4.9.2 Normal Operation<br>4.9.3 Shut-down<br>4.9.4 Warming Up                                                                                                                   | 32<br>32<br>33<br>33<br>33             |
| 4.10 | MAINTENANCE                                                                                                                                                                                                    | 33                                     |
| 4.11 | LEAK DETECTION<br>4.11.1 Introduction<br>4.11.2 Site Leak Detection Pressure Test<br>4.11.3 Site Helium Leak Detection Test                                                                                    | 34<br>34<br>34<br>35                   |
| 4.12 | REPAIR OF LEAKS<br>4.12.1 Repair of Leaks to the Brazed Aluminium Plate-Fin Heat Exchanger                                                                                                                     | 35<br>35                               |
| 4.13 | STORAGE                                                                                                                                                                                                        | 36                                     |
| MEC  | HANICAL STANDARDS                                                                                                                                                                                              | 37                                     |
| 5.1  | SCOPE                                                                                                                                                                                                          | 37                                     |
| 5.2  | DEFINITION OF A BRAZED ALUMINIUM PLATE-FIN HEAT EXCHANGER                                                                                                                                                      | 37                                     |
| 5.3  | CODES FOR CONSTRUCTION                                                                                                                                                                                         | 37                                     |
| 5.4  | TYPICAL MATERIALS OF CONSTRUCTION                                                                                                                                                                              | 37                                     |
| 5.5  | DESIGN PRESSURES                                                                                                                                                                                               | 38                                     |
|      |                                                                                                                                                                                                                |                                        |

4

5

| 5.6         | TESTING<br>5.6.1 Pressure Test<br>5.6.2 Leak Test                                                                                                                                                                                                                                                                                                                                              | 38<br>38<br>38                         |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 5.7         | METAL TEMPERATURE LIMITATIONS<br>5.7.1 Metal Temperature Limitations<br>5.7.2 Design Temperature                                                                                                                                                                                                                                                                                               | 39<br>39<br>39                         |
| 5.8         | PERMISSIBLE TEMPERATURE DIFFERENCES BETWEEN ADJACENT<br>STREAMS                                                                                                                                                                                                                                                                                                                                | 39                                     |
| 5.9         | CORROSION ALLOWANCES                                                                                                                                                                                                                                                                                                                                                                           | 40                                     |
| 5.10        | SERVICE LIMITATIONS                                                                                                                                                                                                                                                                                                                                                                            | 40                                     |
| 5.11        | TYPICAL RANGE OF SIZES<br>5.11.1 Parting Sheets<br>5.11.2 Cap Sheets<br>5.11.3 Side Bars<br>5.11.4 Fins                                                                                                                                                                                                                                                                                        | 40<br>40<br>40<br>40<br>40             |
| 5.12        | HEADERS AND NOZZLES                                                                                                                                                                                                                                                                                                                                                                            | 41                                     |
| 0.12        | 5.12.1 Headers                                                                                                                                                                                                                                                                                                                                                                                 | 41                                     |
|             | 5.12.2 Nozzles                                                                                                                                                                                                                                                                                                                                                                                 | 41                                     |
| <b>F</b> 40 | 5.12.3 Aluminium Flanged Connections                                                                                                                                                                                                                                                                                                                                                           | 42                                     |
| 5.13        |                                                                                                                                                                                                                                                                                                                                                                                                | 43                                     |
| 5.14        |                                                                                                                                                                                                                                                                                                                                                                                                | 43                                     |
| 5.15        | BRAZED ALUMINIUM PLATE-FIN HEAT EXCHANGER AS A PRESSURE<br>VESSEL<br>5.15.1 Fins<br>5.15.2 Parting Sheets<br>5.15.3 Side Bars<br>5.15.4 Cap Sheets<br>5.15.5 Headers and Nozzles                                                                                                                                                                                                               | 43<br>43<br>44<br>44<br>44<br>44       |
| 5.16        | SPECIAL FEATURES                                                                                                                                                                                                                                                                                                                                                                               | 44                                     |
|             |                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| MAT         | ERIALS                                                                                                                                                                                                                                                                                                                                                                                         | 45                                     |
| 6.1         | TYPICAL MATERIALS OF CONSTRUCTION                                                                                                                                                                                                                                                                                                                                                              | 45                                     |
| THEF        | RMAL AND HYDRAULIC DESIGN                                                                                                                                                                                                                                                                                                                                                                      | 47                                     |
| 7.1         | INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                   | 47                                     |
| 7.2         | <ul> <li>FEATURES OF A BRAZED ALUMINIUM PLATE-FIN HEAT EXCHANGER</li> <li>7.2.1 Primary and Secondary Heat Transfer Surfaces and Thermal Length</li> <li>7.2.2 Single and Multiple Banking</li> <li>7.2.3 Multi-stream Brazed Aluminium Plate-fin Heat Exchangers</li> </ul>                                                                                                                   | 47<br>47<br>48<br>48                   |
| 7.3         | THERMAL DESIGN PROCEDURE                                                                                                                                                                                                                                                                                                                                                                       | 48                                     |
| 7.4         | <ul> <li>THERMAL RELATIONS</li> <li>7.4.1 Basic Heat Transfer Relation</li> <li>7.4.2 <i>MTD</i> and <i>UA<sub>r</sub></i></li> <li>7.4.3 Overall Effective Heat Transfer Surface of Exchanger</li> <li>7.4.4 Effective Heat Transfer Coefficient of Each Stream</li> <li>7.4.5 Heat Transfer Surface of Each Passage</li> <li>7.4.6 Rough Estimation of the Core Volume and Weight</li> </ul> | 49<br>49<br>52<br>53<br>53<br>54<br>55 |
| 7.5         | HYDRAULIC RELATIONS<br>7.5.1 Components of Pressure Loss<br>7.5.2 Single-Phase Pressure Loss<br>7.5.3 Two-Phase Pressure Loss                                                                                                                                                                                                                                                                  | 55<br>55<br>56<br>57                   |

|       | 7.6   | GENEI<br>7.6.1 | RAL CONSIDERATIONS IN THE THERMAL AND HYDRAULIC DESIGN<br>Choice of Fin Geometry | 57<br>57 |
|-------|-------|----------------|----------------------------------------------------------------------------------|----------|
|       |       | 7.6.2          | Layer Stacking Arrangement                                                       | 58       |
|       |       | 7.6.3          | Two-Phase Distribution                                                           | 58       |
|       |       | 7.6.4          |                                                                                  | 58       |
|       |       | 7.6.5          | Manifold Assemblies                                                              | 58       |
|       |       | 7.0.5          | Mannold Assemblies                                                               | 50       |
| 8     | RECO  | OMMEN          | IDED GOOD PRACTICE                                                               | 59       |
|       | 8.1   |                | MAL STRESSES WITHIN BRAZED ALUMINIUM PLATE-FIN HEAT                              |          |
|       |       |                | ANGERS                                                                           | 59       |
|       |       |                | Introduction                                                                     | 59       |
|       |       | 8.1.2          |                                                                                  | 59       |
|       |       |                | Recommendations                                                                  | 60       |
|       |       | 8.1.4          | Summary                                                                          | 60       |
|       | 8.2   |                | NG AND PLUGGING OF BRAZED ALUMINIUM PLATE-FIN HEAT                               |          |
|       |       | -              | ANGERS                                                                           | 60       |
|       |       | 8.2.1          | Fouling                                                                          | 60       |
|       |       | 8.2.2          | Plugging                                                                         | 61       |
|       | 8.3   | CORR           | OSION                                                                            | 62       |
|       |       | 8.3.1          | Process Environments Containing Water                                            | 62       |
|       |       | 8.3.2          | Process Environments Containing Mercury                                          | 63       |
|       |       | 8.3.3          | Atmospheric or Environmental Corrosion                                           | 64       |
|       |       | 8.3.4          | Other Services                                                                   | 65       |
| 9     | SPEC  | CIAL AF        | PLICATIONS AND EXCHANGER PERIPHERALS                                             | 66       |
|       | 9.1   | BI OCI         | K-IN-SHELL HEAT EXCHANGERS                                                       | 66       |
|       | 0.1   | 9.1.1          | General                                                                          | 66       |
|       |       | 9.1.2          |                                                                                  | 66       |
|       |       | 9.1.3          | 5                                                                                | 66       |
|       |       |                | Thermal and Hydraulic Design                                                     | 67       |
|       |       | 9.1.5          | Mechanical Design/Testing                                                        | 67       |
|       |       | 9.1.6          | Typical Applications                                                             | 68       |
|       | 9.2   | COLD           | BOXES                                                                            | 68       |
|       |       | 9.2.1          | General                                                                          | 69       |
|       |       | 9.2.2          | Advantages                                                                       | 69       |
|       |       | 9.2.3          | Structure                                                                        | 69       |
|       |       | 9.2.4          | Thermal Insulation                                                               | 69       |
|       |       | 9.2.5          | Nitrogen Purge                                                                   | 69       |
|       |       | 9.2.6          | Wall Penetrations                                                                | 70       |
|       |       | 9.2.7          | Attachments                                                                      | 70       |
|       |       | 9.2.8          | Safety Devices                                                                   | 70       |
|       |       | 9.2.9          | Temporary Bracings                                                               | 70       |
|       |       |                | Fire Protection                                                                  | 70       |
|       |       |                | Flanged Connections                                                              | 70       |
|       |       | 9.2.12         | Shipping, Handling and Installation                                              | 70       |
| Notat | ion   |                |                                                                                  | 71       |
| Refer | ences |                |                                                                                  | 72       |
|       |       |                |                                                                                  |          |
| Index |       |                |                                                                                  | 73       |
|       |       |                |                                                                                  |          |

## **LIST OF FIGURES**

| Figure 1-2: Components of a Brazed Aluminium Plate-Fin Heat Exchanger                        | 5  |
|----------------------------------------------------------------------------------------------|----|
| Figure 1-3: Typical Assembly of Three Brazed Aluminium Plate-Fin Heat Exchangers in Parallel |    |
| Figure 1-4: Typical Header Configurations                                                    | 8  |
| Figure 1-5: Typical Header/Nozzle Configurations                                             | 8  |
| Figure 1-6: Principal Types of Fin                                                           |    |
| Figure 1-7: Definition of Fin Dimensions                                                     | 10 |
| Figure 1-8: Examples of the Principal Distributor Types                                      | 11 |
| Figure 1-9a: Perforated Tube or Bar Distributor                                              |    |
| Figure 1-9b: Slotted Parting Sheet, Split Passages Type                                      |    |
| Figure 1-9c: Slotted Parting Sheet, Adjacent Passages Type                                   | 13 |
| Figure 1-10: Structure of an Individual Layer                                                |    |
| Figure 1-11: Flow Arrangements                                                               |    |
| Figure 2-1: Important External Dimensions of One Core using the Core Centre Line             | 15 |
| Figure 2-2: Important External Dimensions of One Core using the Support Base Line            | 16 |
| Figure 2-3: Important External Dimensions of a Manifolded Assembly of Two Cores: General     |    |
| Flange Details                                                                               | 17 |
| Figure 4-1: Typical Sliding Guide Frame                                                      |    |
| Figure 4-2: Typical Heat Exchanger Assembly of Three Cores Showing Shear Plate Supports      | 26 |
| Figure 4-3: Typical Heat Exchanger Assembly of Three Cores Showing Angle Bracket Supports    | 27 |
| Figure 4-4: Coefficient of Thermal Expansion of Aluminium                                    |    |
| Figure 4-5: Typical Shear Plate Bolt Assembly                                                |    |
| Figure 4-6: Recommended Minimum Insulation Thickness (mm)                                    |    |
| Figure 5-1: Positions of the Three Reference Axes                                            | 42 |
| Figure 7-1: Cross Sectional View of Fin and Parting Sheet                                    | 47 |
| Figure 7-2: Single and Double Banking                                                        | 48 |
| Figure 7-3: Typical Specification Sheet                                                      | 50 |
| Figure 7-4: Typical Specification Sheet                                                      | 51 |
| Figure 7-5: Example Composite Curve                                                          | 52 |
| Figure 7-6: Pressure Loss Components                                                         | 56 |
| Figure 7-7: Manifold Assemblies                                                              | 58 |
| Figure 9-1: Block-In-Shell Heat Exchanger                                                    |    |
| Figure 9-2: Cold Box                                                                         | 68 |

## LIST OF TABLES

| Table 1-1: Plant Types and Applications                                                    | 4  |
|--------------------------------------------------------------------------------------------|----|
| Table 5-1: Typical Resultant Forces and Moments Allowable at Nozzle-to-Header Intersection | 42 |
| Table 6-1: Typical Materials Used in the Construction of Brazed Aluminium Plate-Fin Heat   |    |
| Exchangers and their Maximum Applicable Design Temperature (Celsius)                       | 45 |
| Table 6-2: Typical Materials Used in the Construction of Brazed Aluminium Plate-Fin Heat   |    |
| Exchangers and their Maximum Applicable Design Temperature (Fahrenheit)                    | 46 |
| Table 7-1: Common Applications for each Type of Fin                                        | 57 |

(vi)

## **1 GENERAL DESCRIPTION AND NOMENCLATURE**

### 1.1 GENERAL DESCRIPTION

#### 1.1.1 Background

Brazed aluminium plate-fin exchangers are the most compact and energy efficient heat exchangers for handling a wide range of services, noted particularly for their relative high thermal efficiency, compactness, low weight and low maintenance. They provide low capital, installation and operating costs over a wide range of cryogenic and noncryogenic applications. Typically, these units have a total surface area of 1000-1500  $m^2/m^3$  of volume; this compares, for instance, with a shell-and-tube unit where the surface area per unit volume is of the order of 40 to 70 m<sup>2</sup>/m<sup>3</sup>. Plate-fin heat exchangers with surface areas of 2000 m<sup>2</sup>/m<sup>3</sup> are sometimes employed in the process industry. For these reasons plate-fin heat exchangers find applications in aircraft, automobiles, rail transport, offshore platforms, etc. The main applications are in industrial gas processing, natural gas processing and LNG, refining of petrochemicals and refrigeration services. Their ability to carry multiple streams, occasionally up to 12 or more, allows process integration in certain industrial processes, establishing them firmly in air separation processes and other cryogenic systems. The very large surface area per unit volume is particularly advantageous when low temperature differences apply. Such applications are typically found in cryogenic systems and hydrocarbon dewpoint control systems where temperature difference is linked to compressor power.

While plate-fin heat exchangers are available in various materials, this Standard refers solely to brazed aluminium plate-fin heat exchangers.

Where it is feasible to use a brazed aluminium plate-fin heat exchanger, it is nearly always the most cost effective solution, often by a significant margin.

#### 1.1.2 Introduction

A brazed aluminium plate-fin heat exchanger consists of a block (core) of alternating layers (passages) of corrugated fins. The layers are separated from each other by parting sheets and sealed along the edges by means of side bars, and are provided with inlet and outlet ports for the streams. The block is bounded by cap sheets at the top and bottom.

An illustration of a multi-stream plate-fin heat exchanger is shown in Figure 1-1.

The stacked assembly is brazed in a vacuum furnace to become a rigid core. To complete the heat exchanger, headers with nozzles are welded to the side bars and parting sheets adjacent to the ports.

The size of a brazed aluminium plate-fin heat exchanger shall be specified by width W, stacking height H and length L of the rectangular block. (Figure 1-2).

The three dimensions shall be given always in the same sequence as  $W \times H \times L$ , e.g.  $900 \times 1180 \times 6100$  mm.

## 1.1.3 Successful Applications for Brazed Aluminium Plate-Fin Heat Exchangers

#### 1.1.3.1 Typical services

Most brazed aluminium plate-fin heat exchangers have been installed in process plants used to separate a feed gas into its constituents, for example by the partial liquefaction of the feed and subsequent distillation and separation. The products and waste streams are then re-warmed against the feed streams. Condensers and reboilers are associated with distillation columns. Often chillers using standard refrigerants are used. Brazed aluminium plate-fin heat exchangers are well suited for these and many other services. A partial listing includes:

| Name                             | Service                                                                                                                   |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Main exchanger                   | To cool inlet feed streams against return product and residue streams                                                     |
| Reversing<br>exchanger           | Air separation application to cool air and remove atmospheric water and CO <sub>2</sub> by reversing flow                 |
| Subcooler                        | To subcool liquid products or other liquid streams                                                                        |
| Reboiler                         | To reboil column bottoms or vaporise tray liquids.<br>Often this exchanger is installed inside a column                   |
| Overhead condenser               | To condense column overheads, usually against a refrigerant stream                                                        |
| Chiller                          | To cool a process stream with a vaporising<br>refrigerant                                                                 |
| Liquefiers                       | To liquefy the feed gas in a closed loop                                                                                  |
| Dephlegmators, reflux condensers | To condense overheads with vapour and liquid in<br>countercurrent flow and perform simultaneous heat<br>and mass transfer |
| Aftercooler                      | To cool vapour coming from a compressor discharge                                                                         |
| Block-in-shell<br>exchangers     | Type of reboiler with horizontal block inside a shell.<br>Operates as a kettle reboiler (See Chapter 9).                  |

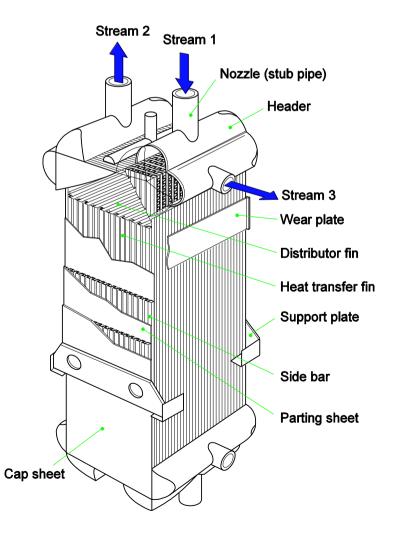



Figure 1-1: Illustration of a Typical Multi-Stream Brazed Aluminium Plate-Fin Heat Exchanger

2 • STANDARDS OF THE BRAZED ALLIMINIUM PLATE-FIN HEAT EXCHANGER MANUFACTURER'S ASSOCIATION This is a preview. Click here to purchase the full publication.